Motion-Resolved, Comprehensive Quantitative Tissue Characterization Using MR Multitasking
使用 MR 多任务处理进行运动解析、全面的定量组织表征
基本信息
- 批准号:10376180
- 负责人:
- 金额:$ 62.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAlgorithmsArrhythmiaArtificial IntelligenceBlood flowBreathingCancer PatientCardiacCardiovascular DiseasesCardiovascular systemClinicalCollectionConsumptionDataDevelopmentDiagnosisDiffuseDiffusionDimensionsDiseaseEarly DiagnosisEdemaElectrocardiogramFibrosisHemorrhageImageIronJointsLeadLipidsLiverLongitudinal StudiesMachine LearningMagnetic Resonance ImagingMagnetismMalignant neoplasm of prostateMapsMeasurementMeasuresMethodsModelingMonitorMorphologic artifactsMotionNatureNeurologicOrganPatientsPhysiologicalPositioning AttributePredispositionProcessPropertyRecoveryReproducibilityResearchResearch PersonnelRespirationRisk AssessmentScanningSeriesSignal TransductionSourceStagingSystemTechnologyTestingTimeTissue imagingTissuesValidationbody systemdeep learningheart motionimage reconstructionmagnetic fieldmagnetohydrodynamicmathematical modelmultitasknew technologyprospectivequantitative imagingreconstructionrespiratorytime usetissue biomarkerstool
项目摘要
PROJECT SUMMARY
Quantitative magnetic resonance imaging (MRI) measures tissue parameters such as T1, T2, T2*, and
diffusion to detect subtle differences in tissue states (such as microstructure, diffuse fibrosis, edema,
hemorrhage, and iron content) from neurological, oncological, and cardiovascular diseases. Because each
parameter offers complementary tissue information, multiparameter mapping is very promising for risk
assessment, early detection, accurate staging, and treatment monitoring of disease. However, quantitative MRI
is typically very time consuming and difficult to perform. Each parameter is typically measured from its own
series of images, so measuring multiple parameters leads to long, inefficient scanning sessions. Furthermore,
cardiac and breathing motion creates misalignment between images, causing additional problems.
The standard approach to motion is to either remove it (e.g., ask the patient to hold their breath) or to
synchronize image acquisition with it (e.g., using electrocardiography (ECG) to monitor cardiac motion). This
approach makes scan times even longer, limits imaging to patients who can repeatedly perform long breath
holds (which is difficult for aging or weak patients) and who have predictable cardiac motion (which is not true
of patients with cardiac arrhythmias). Furthermore, these methods are often unreliable and difficult to perform.
This project is to develop and validate a new technology, MR Multitasking, to perform multiple
simultaneous measurements in a single, push-button scan that is both comfortable for patients and simple for
technologists to perform. MR Multitasking redesigns quantitative MRI around the concept of images as
functions of many time dimensions, each corresponding to a different dynamic process (e.g., motion, T1, T2,
T2*, and diffusion), and then uses mathematical models called low-rank tensors to perform fast,
multidimensional imaging. This allows continuous acquisition of imaging data even while the subject is moving,
providing motion-resolved parameter maps without breath holding or motion synchronization. We will scan
healthy subjects, liver patients, prostate cancer patients, and cardiovascular patients to develop and validate
this technology and use artificial intelligence to quickly reconstruct images from the collected data. The
resulting tool will be applicable to any organ system, offering clinicians and investigators a valuable tool to
answer a wide range of biomedical questions.
项目摘要
定量磁共振成像(MRI)测量组织参数,例如T1,T2,T2*和
扩散以检测组织态的细微差异(例如微结构,弥漫性纤维化,水肿,
神经,肿瘤和心血管疾病的出血和铁含量)。因为每个
参数提供互补的组织信息,多参数映射非常有前途的风险
评估,早期检测,准确分期和疾病的治疗监测。但是,定量MRI
通常非常耗时且难以执行。每个参数通常是根据自己的
一系列图像,因此测量多个参数会导致长时间,效率低下的扫描会话。此外,
心脏和呼吸运动在图像之间造成不对准,从而导致其他问题。
标准运动方法是将其删除(例如,要求患者屏住呼吸)或
与IT同步图像采集(例如,使用心电图(ECG)监测心脏运动)。这
方法可以使扫描时间更长,将成像限制给可以反复呼吸的患者
持有(对于衰老或弱患者来说很难)并且具有可预测的心脏运动(这是不正确的
心律不齐的患者)。此外,这些方法通常不可靠且难以执行。
该项目是为了开发和验证一项新技术,多任务先生,以执行多个
同时进行单个按钮扫描中的测量
要执行的技术人员。 MR多任务重新设计图像概念的定量MRI作为
许多时间维度的函数,每个功能对应于不同的动态过程(例如运动,T1,T2,
T2*和扩散),然后使用称为低级张量的数学模型来快速执行,
多维成像。即使受试者移动,这也可以连续获取成像数据,
提供运动分辨的参数图,而无需呼吸或运动同步。我们将扫描
健康受试者,肝脏患者,前列腺癌患者和心血管患者发展和验证
这项技术并使用人工智能快速从收集的数据中重建图像。这
最终的工具将适用于任何器官系统,为临床医生和调查人员提供一个有价值的工具
回答各种生物医学问题。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multitasking dynamic contrast enhanced magnetic resonance imaging can accurately differentiate chronic pancreatitis from pancreatic ductal adenocarcinoma.
- DOI:10.3389/fonc.2022.1007134
- 发表时间:2022
- 期刊:
- 影响因子:4.7
- 作者:Wang, Nan;Gaddam, Srinivas;Xie, Yibin;Christodoulou, Anthony G.;Wu, Chaowei;Ma, Sen;Fan, Zhaoyang;Wang, Lixia;Lo, Simon;Hendifar, Andrew E.;Pandol, Stephen J.;Li, Debiao
- 通讯作者:Li, Debiao
Three-dimensional whole-brain simultaneous T1, T2, and T1ρ quantification using MR Multitasking: Method and initial clinical experience in tissue characterization of multiple sclerosis.
- DOI:10.1002/mrm.28553
- 发表时间:2021-04
- 期刊:
- 影响因子:3.3
- 作者:Ma S;Wang N;Fan Z;Kaisey M;Sicotte NL;Christodoulou AG;Li D
- 通讯作者:Li D
Motion-robust quantitative multiparametric brain MRI with motion-resolved MR multitasking.
- DOI:10.1002/mrm.28959
- 发表时间:2022-01
- 期刊:
- 影响因子:3.3
- 作者:Ma S;Wang N;Xie Y;Fan Z;Li D;Christodoulou AG
- 通讯作者:Christodoulou AG
Data-Consistent non-Cartesian deep subspace learning for efficient dynamic MR image reconstruction.
- DOI:10.1109/isbi52829.2022.9761497
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Chen, Zihao;Chen, Yuhua;Xie, Yibin;Li, Debiao;Christodoulou, Anthony G.
- 通讯作者:Christodoulou, Anthony G.
MR Multitasking-based multi-dimensional assessment of cardiovascular system (MT-MACS) with extended spatial coverage and water-fat separation.
- DOI:10.1002/mrm.29522
- 发表时间:2023-04
- 期刊:
- 影响因子:3.3
- 作者:Hu, Zhehao;Xiao, Jiayu;Mao, Xianglun;Xie, Yibin;Kwan, Alan C.;Song, Shlee S.;Fong, Michael W.;Wilcox, Alison G.;Li, Debiao;Christodoulou, Anthony G.;Fan, Zhaoyang
- 通讯作者:Fan, Zhaoyang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony G Christodoulou其他文献
Multicontrast 3D automated segmentation of cardiovascular images
- DOI:
10.1186/1532-429x-18-s1-o114 - 发表时间:
2016-01-27 - 期刊:
- 影响因子:
- 作者:
Matthew Bramlet;Anthony G Christodoulou;Brad Sutton - 通讯作者:
Brad Sutton
Anthony G Christodoulou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony G Christodoulou', 18)}}的其他基金
Fully Quantitative Low-Dose, Motion-Resolved Dynamic Contrast-Enhanced MRI in Pancreatic Adenocarcinoma
胰腺癌的全定量低剂量运动分辨动态对比增强 MRI
- 批准号:
10646508 - 财政年份:2022
- 资助金额:
$ 62.86万 - 项目类别:
Fully Quantitative Low-Dose, Motion-Resolved Dynamic Contrast-Enhanced MRI in Pancreatic Adenocarcinoma
胰腺癌的全定量低剂量运动分辨动态对比增强 MRI
- 批准号:
10419915 - 财政年份:2022
- 资助金额:
$ 62.86万 - 项目类别:
SSFP Cardiovascular MR Imaging on 3.0T Using Unified-Coil Local Shimming
使用统一线圈局部匀场在 3.0T 上进行 SSFP 心血管 MR 成像
- 批准号:
10530641 - 财政年份:2020
- 资助金额:
$ 62.86万 - 项目类别:
SSFP Cardiovascular MR Imaging on 3.0T Using Unified-Coil Local Shimming
使用统一线圈局部匀场在 3.0T 上进行 SSFP 心血管 MR 成像
- 批准号:
10152406 - 财政年份:2020
- 资助金额:
$ 62.86万 - 项目类别:
SSFP Cardiovascular MR Imaging on 3.0T Using Unified-Coil Local Shimming
使用统一线圈局部匀场在 3.0T 上进行 SSFP 心血管 MR 成像
- 批准号:
10318662 - 财政年份:2020
- 资助金额:
$ 62.86万 - 项目类别:
Motion-Resolved, Comprehensive Quantitative Tissue Characterization Using MR Multitasking
使用 MR 多任务处理进行运动解析、全面的定量组织表征
- 批准号:
9766063 - 财政年份:2019
- 资助金额:
$ 62.86万 - 项目类别:
Motion-Resolved, Comprehensive Quantitative Tissue Characterization Using MR Multitasking
使用 MR 多任务处理进行运动解析、全面的定量组织表征
- 批准号:
9886248 - 财政年份:2019
- 资助金额:
$ 62.86万 - 项目类别:
Expanding on a new paradigm for MRI in pediatric congenital heart disease
拓展小儿先天性心脏病 MRI 的新范例
- 批准号:
10469364 - 财政年份:2015
- 资助金额:
$ 62.86万 - 项目类别:
Expanding on a new paradigm for MRI in pediatric congenital heart disease
拓展小儿先天性心脏病 MRI 的新范例
- 批准号:
10622604 - 财政年份:2015
- 资助金额:
$ 62.86万 - 项目类别:
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 62.86万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 62.86万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 62.86万 - 项目类别:
The predicative values of vascular and metabolic disorders for risk of incident mild cognitive impairment and dementia
血管和代谢紊乱对发生轻度认知障碍和痴呆风险的预测价值
- 批准号:
10661996 - 财政年份:2023
- 资助金额:
$ 62.86万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 62.86万 - 项目类别: