Enhancing Assisted Reproductive Technologies with Deep Learning and Data Visualization
通过深度学习和数据可视化增强辅助生殖技术
基本信息
- 批准号:10376335
- 负责人:
- 金额:$ 68.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAgeAssisted Reproductive TechnologyBackCell LineageClassificationClinicClinicalClinical DataClinical Decision Support SystemsClinical TreatmentCloud ServiceCommunitiesComplexComputer ModelsComputer Vision SystemsComputersCouplesDataData AnalysesData SetData Storage and RetrievalDatabasesDecision MakingDetectionDevelopmentDisciplineE-learningElectronic Health RecordEmbryoEmbryo TransferEmbryonic DevelopmentFosteringGoalsHumanHuman BiologyImageImage AnalysisIn VitroJudgmentKnowledgeLabelLeadMachine LearningManualsMedicalMethodsModelingMorbidity - disease rateMorphologyMothersMultiple PregnancyObesityPatientsPatternPhysiologicalPre-implantation Embryo DevelopmentPregnancyPregnancy RatePrivacyProbabilityResearchScienceScientistSecureSecurityTextTimeTreesUnited StatesUrsidae FamilyUterusVisualVisualizationVisualization softwareanalytical toolbaseblastocystclinical decision-makingclinical practicecloud basedcohortconvolutional neural networkdata cleaningdata curationdata managementdata visualizationdeep learningdeep learning modelembryo cellembryo monitoringfeature extractionhuman-in-the-loopimplantationimprovedinfertility treatmentinsightlarge scale datamachine learning algorithmmachine learning modelmicroscopic imagingmodel designmulti-task learningmultimodalitynoveloperationpredictive modelingsuccesssupervised learningtoolunsupervised learningzygote
项目摘要
PROJECT SUMMARY
Assisted Reproduction Technology (ART) is a clinical treatment for infertile couples who want to achieve a
pregnancy. In ART, embryologists fertilize eggs retrieved from the patient or a donor, culture the resulting embryos
in vitro, and then transfer the selected embryo(s) to the mother's uterus. While ART is responsible for 1.9% of babies
born in the United States as of 2018, selecting which embryo to transfer is a significant challenge. The difficulty
comes from the complexity of confounding factors and the lack of understanding of human pre-implantation
embryo development. Because of this difficulty, multiple embryos are often transferred to increases the potential of
success, resulting in multiple pregnancy rates of nearly 20%, which can lead to significant morbidity and medical
expenses to patients. The ideal is to transfer only a single embryo, but this necessitates the ability to select the
best embryo from a cohort. Here, we propose to create a clinical decision support system to improve embryo
selection in ART.
To this end, we will develop novel deep learning models for robust embryo feature extraction and interactive
data visualization methods for human-in-the-loop analysis. We will first extract and analyze visual features from
routinely collected images of embryos. We will then combine these visual features with patients' electronic health
record (EHR) data to develop interpretable computation models that score embryos on their viability. We plan to
integrate our machine learning solutions into an easily accessible cloud service platform that will be adaptable
across clinics to improve ART embryo selection and clinical data analysis.
Our research goals will be achieved by novel machine learning-based models for morphological feature extrac-
tion and importance estimation of each confounding factor and a clinical decision support system for ART. For
morphological feature extraction, we plan to conduct semi-supervised learning of convolutional neural networks
to minimize manual labeling that requires extensive human effort. Our feature extraction model will be the first
comprehensive classification and segmentation method for ART. To aid in embryo selection, we will develop
novel deep learning-based models to predict probabilities of achieving pregnancy by accepting visual features and
EHR data as the input. We will also develop visual analytic tools that allow analysts to better understand and steer
these deep learning models. We will estimate the importance of each input interpretable factor in embryo selection
to explain the prediction to embryologists. Finally, we will develop EmbryoProfiler, a clinical decision support
system for ART, that combines our machine learning-based models with a user-facing suite of visual analytic
tools to support user guidance and clinical decision making. EmbryoProfiler will help facilitate daily operation in
clinics, foster human-guided decision making, enrich data-driven embryo analysis, and enhance the ability to
select the developmentally most competent embryo for transfer to improve ART success rates. Our project will
create state-of-the-art analysis approaches for ART clinicians.
项目摘要
辅助繁殖技术(ART)是想要实现的不育夫妇的临床宝藏
怀孕。
在体外,以及母亲的子宫的选定胚胎。
截至2018年,出生于美国,选择哪种胚胎转移是一个重要的挑战。
来自混杂因素的复杂性以及对人类前植入前的缺乏理解
胚胎发育。
成功,导致多个怀孕率接近20%,这可能导致病态和医疗
给患者的费用。理想是转移一个胚胎
我们的队列最佳胚胎。我们建议创建一个临床决策支持系统以改善胚胎
艺术选择。
这一目的,我们将开发出新颖的深度学习模型,用于鲁棒的胚胎特征提取和交互式
数据可视化方法用于循环分析。
常规收集的胚胎图像。
记录(EHR)的数据,以开发可解释的计算模型,以我们计划在其生存力上进行评分
将我们的机器学习解决方案集成到一个容易访问的云服务平台中,该平台将具有适应性
在整个诊所中,以改善ART胚胎的选择和临床数据分析。
我们的研究目标将通过新型的基于机器学习的形态模型来实现 -
对每个混杂因素和艺术临床决策系统的意义和重要性估计。
形态学特征提取,我们计划进行传统网络的半监督
为了最大程度地减少需要大量人类努力的手动标签。
全面的分类和分割方法,以帮助胚胎选择
新颖的基于学习的模型,通过接受视觉特征和
EHR数据作为输入。
这些深度学习模型。
解释胚胎学的预测。
艺术系统,将我们的基于机器学习的模型与面向用户的Visuallytic套件相结合
支持用户指导和临床决策的工具
诊所,促进人类指导的决策,丰富数据驱动的胚胎分析,并增强能力
选择最有能力的胚胎来转移以提高我们的项目
为艺术临床医生创建最先进的分析方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dalit Ben Yosef其他文献
Dalit Ben Yosef的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dalit Ben Yosef', 18)}}的其他基金
Enhancing Assisted Reproductive Technologies with Deep Learning and Data Visualization
通过深度学习和数据可视化增强辅助生殖技术
- 批准号:
10185936 - 财政年份:2021
- 资助金额:
$ 68.39万 - 项目类别:
Enhancing Assisted Reproductive Technologies with Deep Learning and Data Visualization
通过深度学习和数据可视化增强辅助生殖技术
- 批准号:
10632115 - 财政年份:2021
- 资助金额:
$ 68.39万 - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
- 批准号:82301214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Enhancing Assisted Reproductive Technologies with Deep Learning and Data Visualization
通过深度学习和数据可视化增强辅助生殖技术
- 批准号:
10185936 - 财政年份:2021
- 资助金额:
$ 68.39万 - 项目类别:
Enhancing Assisted Reproductive Technologies with Deep Learning and Data Visualization
通过深度学习和数据可视化增强辅助生殖技术
- 批准号:
10632115 - 财政年份:2021
- 资助金额:
$ 68.39万 - 项目类别:
Analysis of epigenetic regulation in early mammalian embryos via RNA interference
通过RNA干扰分析早期哺乳动物胚胎的表观遗传调控
- 批准号:
8097100 - 财政年份:2010
- 资助金额:
$ 68.39万 - 项目类别:
Improvement in Oocyte In Vitro Maturation (IVM) Using Microfluidic Culture
使用微流体培养改善卵母细胞体外成熟 (IVM)
- 批准号:
7999501 - 财政年份:2010
- 资助金额:
$ 68.39万 - 项目类别: