The regulation of the histone code during cardiac hypertrophy

心脏肥大过程中组蛋白密码的调节

基本信息

  • 批准号:
    10373727
  • 负责人:
  • 金额:
    $ 66.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

Abstract Our goal is to investigate the impact of diet and pressure overload on the histone code, and how this influences changes in gene expression in the healthy and hypertrophied/failing hearts and, in turn, how it impacts progression of the disease. Deciphering the histone code and how diet can modify it, provides us an educated means to exploit it to our advantage, especially during pathological conditions. Acetylation and methylation of histone lysine (K) residues were the first histone modifications discovered and are, therefore, the most widely studied and understood. However, to-date, there are 11 confirmed modifiers of histone lysine residues, including the acyl groups butyryl (Bu), crotonyl (Cr), and b-hydroxybutyrate (bHB) 1, whose source, genomic distribution, and functional relevance, remain largely unknown in the heart, and are the focus of our study. Our recent findings uniquely show that dietary fat is a major regulator of histone butyrylation, including H3K9-butyryl (H3K9Bu). Using genome-wide chromatin immunoprecipitation-sequencing (ChIP-Seq), we show that H3K9Bu is abundant at all transcriptionally active promoters. Both a high-fat diet and stress accelerated the conversion of butyryl-CoA to crotonyl-CoA via acyl-CoA dehydrogenase short chain (ACADS), resulting in a substantial reduction in global promoter-H3K9Bu. A deletion of ACADS both in the mouse heart and in human cells reversed this effect and increased promoter and gene-body H3K9Bu. Paradoxically, though, a fat-free diet had the highest levels of H3K9Bu. Deletion of fatty acid synthetase (FASN), abolished H3K9Bu in cells maintained in a glucose-rich, fatty acid-free, but not in a fatty acid-rich, medium, proving that fatty acid synthesis from carbohydrates substitutes for dietary fat as a source butyryl-CoA. In contrast to H3K9Bu, there were minimal dietary-induced changes in H3K9-acetyl (H3K9ac) levels. Importantly, RNA-sequencing (RNA-Seq) revealed that diet-induced changes in H3K9Bu abundance in the mouse heart was associated with differential changes in gene expression, but only when stressed by pressure overload. Moreover, promoter-H3K9Bu levels inversely correlated with the extent of changes in gene expression levels, as evidenced by the more robust changes seen in the hearts of mice on a, short-term, high-fat vs a fat-free diet, as well as, after deletion of the ACADS. Interestingly, H3K9Bu abundance inversely correlated with H3K9-crotonyl (H3K9Cr) and Cdk9. In sum, our data uniquely show that H3K9Bu is enriched at active promoters, is negatively regulated by high-fat and stress in an ACADS-dependent fashion, and its abundance inversely correlates with stress-induced changes in gene expression. We are proposing that histone H3K9Bu, H3K9Cr, and H3K9-b-hydroxybutyryl (H3K9bHB), are products of the b-oxidation intermediates, butyryl-CoA, crotonyl-CoA, and b-hydroxybutyryl-CoA, or the ketone body, b-hydroxybutyrate, which serve as substrates for histones modifications. These marks are labile and differentially influence pressure overload-induced gene expression, but not baseline expression. Specifically, as H3K9Bu decreases it is replaced by H3K9Cr during a high-fat diet. This exchange exaggerates gene expression and worsens the outcome of cardiac failure. Conversely, H3K9bHB that increases during a ketogenic diet has the opposite effect, as it is reported to have beneficial effects on health and aging. This differential influence of the histone marks on gene expression is mediated by regulating the recruitment of Cdk9 to gene promoters. We hypothesize that 1) A high-fat diet (60 Kcal% fat, 20 Kcal% carb), or pressure overload, accelerates the conversion of nuclear butyryl- CoA to crotonyl-CoA in an ACADS-dependent manner, thus, reducing H3K9Bu and increasing H3K9Cr, which is responsible for exaggerating stress-induced gene expression and worsening the outcome of heart failure (HF). In contrast, a ketogenic diet (84 Kcal% fat, 0% carb) will produce high levels of b-hydroxybutyryl that will increase H3K9bHB, which curbs changes in stress-induced gene expression in a b-hydroxybutyrate dehydrogenase (BDH1)-dependent fashion, improving the outcome of HF. Supplementing a diet with b-hydroxybutyrate will also increase H3K9bHB, with similar beneficial effects. 2) Therefore, knockdown of ACADS reduces the conversion of butyryl-CoA to crotonyl-CoA, increasing H3K9Bu and improving the outcome of heart failure during a high-fat diet. Conversely, deletion or inhibition of BDH1 reduces H3K9bHB and worsens conditions. 3) H3K9Cr enhances the dynamics of cyclin-dependent kinase 9 (Cdk9) recruitment to promoters during stress, whereas, H3K9Bu and H3K9bHB temper it, thus, reducing the extent of changes in gene expression and improving disease outcome. The specific aims are: 1) Examine the effects of high-fat, ketogenic, and b-hydroxybutyrate-enriched diets on the genome-wide distribution and changes in H3K9Bu, H3K9Cr and H3K9bHB, changes in gene expression, and their impact on the progression of cardiac hypertrophy and failure. 2) Investigate the roles of ACADS and BDH1 in regulating the levels of H3K9Bu, H3K9Cr, and H3K9bHb, and the progression of cardiac hypertrophy and failure. 3) Investigate the role of Cdk9 in mediating the differential transcriptional regulation directed by promoter-H3K9Cr vs. H3K9Bu or H3K9bHB during cardiac hypertrophy and failure.
抽象的 我们的目标是研究饮食和压力超负荷对组蛋白代码的影响,以及这如何影响 健康和肥大/失败的心脏中基因表达的变化,然后,它如何影响 疾病的进展。解密组蛋白代码以及如何修改饮食,为我们提供受过教育的 意味着利用它的优势,尤其是在病理状况下。乙酰化和甲基化 组蛋白赖氨酸(K)残基是发现的第一个组蛋白修饰,因此是最广泛的 研究和理解。但是,迄今 酰基丁酰基(BU),crotonyl(Cr)和B-羟基丁酸(BHB)1,其来源,基因组分布, 和功能相关性,在心脏中基本上是未知的,并且是我们研究的重点。我们最近的发现 独特地表明,饮食脂肪是组蛋白丁基化的主要调节剂,包括H3K9-丁烯(H3K9BU)。 使用全基因组染色质免疫沉淀 - 验证(CHIP-SEQ),我们表明H3K9BU丰富 在所有转录活性启动子上。高脂饮食和压力都加速了丁酰基-COA的转化 通过酰基-COA脱氢酶短链(ACADS)到Crotonyl-COA,从而大大减少了全球 启动子-H3K9BU。在小鼠心脏和人类细胞中删除学院的删除使这种效果逆转,并且 启动子和基因体H3K9BU增加。矛盾的是,无脂饮食的水平最高 H3K9BU。脂肪酸合成酶的缺失(FASN),在富含葡萄糖的脂肪中废除的细胞中废除了H3K9BU 不含酸的脂肪酸,培养基,证明碳水化合物取代的脂肪酸合成 作为饮食脂肪作为来源丁酰果酸。与H3K9BU相反,饮食诱导的变化很小 H3K9-乙酰基(H3K9AC)水平。重要的是,RNA测序(RNA-Seq)表明,饮食引起的变化 小鼠心脏中的H3K9BU丰度与基因表达的差异变化有关,但仅 当压力超负荷压力时。此外,启动子-H3K9BU水平与 基因表达水平的变化,这是由小鼠心脏在A上看到的更健壮的变化所证明的, 短期高脂与无脂饮食以及删除学院后。有趣的是,H3K9BU丰度 与H3K9-Crotonyl(H3K9CR)和CDK9成反比。总而言之,我们的数据独特地表明H3K9BU是 在活跃的启动子处富含的启动子,受到学院依赖方式的高脂和压力对负面的调节, 它的丰度成反比与压力诱导的基因表达变化相关。我们建议 组蛋白H3K9BU,H3K9CR和H3K9-B-Hydroxybutyryl(H3K9BHB)是B-氧化的产物 中间体,丁酰辅酶A,Crotonyl-COA和B-羟基丁酰基-COA,或酮体,B-羟基丁酸, 作为组蛋白修饰的底物。这些标记不稳定,并且会影响压力 过载诱导的基因表达,但不是基线表达。具体而言,随着H3K9BU的减少,它被替换 高脂饮食期间由H3K9CR进行。这种交流夸大了基因表达,并使 心力衰竭。相反,在生酮饮食期间增加的H3K9BHB具有相反的作用,因为它是 据报道对健康和衰老产生有益的影响。组蛋白标记对基因的这种差异影响 通过调节CDK9募集到基因启动子来介导表达。我们假设是1) 高脂饮食(60 kcal%脂肪,20 kcal%碳水化合物)或压力超负荷,可以加速核丁酰基 - coa以依赖Acads的方式到Crotonyl-COA,因此减少了H3K9BU并增加H3K9CR 负责夸大胁迫诱导的基因表达并加剧心力衰竭的结果(HF)。 相比之下,生酮饮食(84 kcal%脂肪,0%碳水化合物)将产生高水平的B-羟基丁酰胺,这将增加 H3K9BHB,它遏制在B-羟基丁酸脱氢酶中胁迫诱导的基因表达变化 (BDH1)依赖性时尚,改善了HF的结果。用B-羟基丁酸补充饮食也将 增加H3K9BHB,具有类似的有益作用。 2)因此,学院的敲低减少了转换 丁酰辅酶A到crotonyl-COA,增加H3K9BU并改善高脂期间心力衰竭的结果 饮食。相反,BDH1的缺失或抑制会减少H3K9BHB并恶化条件。 3)H3K9CR增强 在压力期间,细胞周期蛋白依赖性激酶9(CDK9)募集到启动子的动力学,而H3K9BU 因此,H3K9BHB降低了基因表达变化的程度和改善疾病的程度 结果。具体目的是:1)检查高脂,生酮和B-羟基丁酸富集的影响 基因组分布的饮食以及H3K9BU,H3K9CR和H3K9BHB的变化,基因的变化 表达及其对心脏肥大和衰竭进展的影响。 2)调查角色 学院和BDH1在调节H3K9BU,H3K9CR和H3K9BHB的水平以及心脏的进展 肥大和失败。 3)研究CDK9在介导差分转录调控中的作用 在心脏肥大和失败期间,由启动子-H3K9CR与H3K9BU或H3K9BHB指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maha Abdellatif其他文献

Maha Abdellatif的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maha Abdellatif', 18)}}的其他基金

The regulation of the histone code during cardiac hypertrophy
心脏肥大过程中组蛋白密码的调节
  • 批准号:
    10532712
  • 财政年份:
    2021
  • 资助金额:
    $ 66.54万
  • 项目类别:
Transcriptional mechanisms in cardiac hypertrophy
心脏肥大的转录机制
  • 批准号:
    10335218
  • 财政年份:
    2020
  • 资助金额:
    $ 66.54万
  • 项目类别:
Transcriptional mechanisms in cardiac hypertrophy
心脏肥大的转录机制
  • 批准号:
    9893424
  • 财政年份:
    2020
  • 资助金额:
    $ 66.54万
  • 项目类别:
Transcriptional mechanisms in cardiac hypertrophy
心脏肥大的转录机制
  • 批准号:
    10552634
  • 财政年份:
    2020
  • 资助金额:
    $ 66.54万
  • 项目类别:
The role of microRNA in cardiac cell death
microRNA在心肌细胞死亡中的作用
  • 批准号:
    8765070
  • 财政年份:
    2013
  • 资助金额:
    $ 66.54万
  • 项目类别:
Mechanisms in transcriptional regulation during cardiac hypertrophy
心脏肥大过程中的转录调控机制
  • 批准号:
    8725735
  • 财政年份:
    2013
  • 资助金额:
    $ 66.54万
  • 项目类别:
Mechanisms in transcriptional regulation during cardiac hypertrophy
心脏肥大过程中的转录调控机制
  • 批准号:
    9064832
  • 财政年份:
    2013
  • 资助金额:
    $ 66.54万
  • 项目类别:
Mechanisms in transcriptional regulation during cardiac hypertrophy
心脏肥大过程中的转录调控机制
  • 批准号:
    8561869
  • 财政年份:
    2013
  • 资助金额:
    $ 66.54万
  • 项目类别:
A RasGAP-microRNA connection in cardiac hypertrophy
心脏肥大中的 RasGAP-microRNA 连接
  • 批准号:
    8764813
  • 财政年份:
    2013
  • 资助金额:
    $ 66.54万
  • 项目类别:
The role of microRNA in cardiac cell death
microRNA在心肌细胞死亡中的作用
  • 批准号:
    7948531
  • 财政年份:
    2010
  • 资助金额:
    $ 66.54万
  • 项目类别:

相似国自然基金

温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
  • 批准号:
    12302265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
  • 批准号:
    52308322
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
  • 批准号:
    52373051
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
  • 批准号:
    42377282
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
  • 批准号:
    52376132
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

The regulation of the histone code during cardiac hypertrophy
心脏肥大过程中组蛋白密码的调节
  • 批准号:
    10532712
  • 财政年份:
    2021
  • 资助金额:
    $ 66.54万
  • 项目类别:
Mitochondrial chaperones mortalin and Tid1 in protein degradation
蛋白质降解中的线粒体伴侣 mortalin 和 Tid1
  • 批准号:
    8192595
  • 财政年份:
    2011
  • 资助金额:
    $ 66.54万
  • 项目类别:
Mitochondrial chaperones mortalin and Tid1 in protein degradation
蛋白质降解中的线粒体伴侣 mortalin 和 Tid1
  • 批准号:
    8311645
  • 财政年份:
    2011
  • 资助金额:
    $ 66.54万
  • 项目类别:
Gene Regulatory Networks in Development and Physiology
发育和生理学中的基因调控网络
  • 批准号:
    8814454
  • 财政年份:
    2005
  • 资助金额:
    $ 66.54万
  • 项目类别:
Gene Regulatory Networks in Development and Physiology
发育和生理学中的基因调控网络
  • 批准号:
    8930958
  • 财政年份:
    2005
  • 资助金额:
    $ 66.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了