Multi-cue Guidance of Mesenchymal Cell Migration
间充质细胞迁移的多线索引导
基本信息
- 批准号:10370385
- 负责人:
- 金额:$ 28.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAffectBiological AssayCardiovascular DiseasesCardiovascular systemCellsCellular biologyChemicalsChemotactic FactorsChemotaxisComplexCuesCytoskeletonDiseaseDisseminated Malignant NeoplasmElementsEngineeringExtracellular MatrixF-ActinFeedbackFibroblastsFibrosisGenerationsImage AnalysisImmobilizationIntegrinsLeukocytesLigandsLocationMediatingMesenchymalMicrofluidicsMolecularMovementMyosin Regulatory Light ChainsNeoplasm MetastasisNonmuscle Myosin Type IIAPathologicPathway interactionsPhospholipase CPhosphorylationPhysiologicalPhysiological ProcessesPlatelet-Derived Growth FactorPlayProcessProtein Kinase CRegulationRegulatory PathwayRoleShapesSignal PathwaySignal TransductionSignaling ProteinSurfaceTestingTimeTissuesVariantWorkcell behaviorcell motilitycombinatorialdensityin vivointerdisciplinary approachlink proteinmicroscopic imagingmigrationnon-muscle myosinpolymerizationsynergismtumorwoundwound healing
项目摘要
SUMMARY
Cells in a variety of contexts migrate towards soluble chemical cues in a process known as chemotaxis.
Despite nearly a century of study, the mechanistic underpinnings of chemotaxis remain incompletely
understood. Spatial gradients of platelet-derived growth factor (PDGF) and other chemoattractants direct
the movements of mesenchymal cells in tissues to coordinate and accelerate physiologically important
processes such as wound healing, and mesenchymal chemotaxis has been implicated in pathological
conditions such as cardiovascular and fibrotic diseases. Despite the central role that fibroblasts and other
mesenchymal cells play in wound healing and other disease processes such as metastatic cancer and
fibrosis, a rigorous understanding of mechanisms governing the directed migration of mesenchymal cells
is only recently emerging. To advance further, a quantitative, integrative approach is required.
Specifically, it is necessary to elucidate how the central regulatory pathways network with others and how
they are coordinated with respect to subcellular location and time to affect cell behavior. In the context of
directed mesenchymal cell migration, another layer of complexity is the variation of gradient conditions
(midpoint concentration/surface density and steepness). Enabled by new engineering advances, we are
poised to tackle these new questions related to chemotaxis and haptotaxis and to their combinatorial
influence in multi-cue settings. Our Specific Aims are as follows:
Aim 1: Decoding the dynamics of multiple signaling axes that shape mesenchymal chemotaxis.
We will test the hypothesis that protrusion dynamics are governed by the metastable push/pull of Arp2/3
complex and NMII activities, which are insufficiently biased by a chemotactic gradient. With stable
polarization of active PKC in the most-up-gradient protrusion, the inactivation of NMII there provides a
‘port in the storm’ for pro-Arp2/3 signaling to mediate more productive protrusion.
Aim 2: Probing the dynamics of haptotactic sensing and signal amplification. We hypothesize that
differential integrin engagement on ECM gradients drives significant cell migration bias through feedback
amplification of the pro-Arp2/3 signaling axis. If so, it would imply that haptotactic gradients are able to
bias pro-Arp2/3 signaling in mesenchymal cells to an extent that chemotactic gradients cannot.
Aim 3: Defining gradient synergy and prioritization in multi-cue scenarios. Despite the relevance
for guidance of mesenchymal cells in vivo, it is completely unknown how cells respond to co-presentation
of the two gradient types in a controlled setting. Considering how chemotaxis and haptotaxis affect
dynamic regulation of the actin cytoskeleton in fibroblasts, we hypothesize that the two gradients
synergize when presented in a parallel orientation. By presenting the gradients in an antiparallel or
orthogonal orientation, we will determine how cells prioritize the two types of cues.
概括
在多种情况下,在称为趋化性的过程中,细胞向固体化学提示迁移。
尽管进行了将近一个世纪的研究,但趋化性的机械基础仍然不完全
理解。血小板衍生生长因子(PDGF)和其他趋化因子的空间梯度直接
间充质细胞在组织中的运动以协调和加速物理上重要
在病理学中隐含了伤口愈合和间充质趋化性等过程
诸如心血管和纤维化疾病之类的疾病。尽管成纤维细胞和其他
间充质细胞在伤口愈合和其他疾病过程中起作用,例如转移性癌和
纤维化,对管理间充质细胞的定向迁移的机制的严格理解
直到最近出现。为了进一步发展,需要采用定量的综合方法。
具体而言,有必要阐明中央监管途径如何与他人建立联系以及如何
它们相对于亚细胞位置和影响细胞行为的时间进行了协调。在
定向间充质细胞迁移,另一层复杂性是梯度条件的变化
(中点浓度/表面密度和钢)。由新的工程进步启用,我们是
中毒以解决与趋化性和触觉有关的这些新问题及其组合
在多提示设置中的影响。我们的具体目的如下:
目标1:解码塑造间充质趋化性的多个信号轴的动力学。
我们将检验以下假设:蛋白质动力学受ARP2/3的亚稳态推/拉的控制
复杂和NMII活性,这些活动不足以趋化趋化梯度偏见。稳定
活性PKC在最高梯度蛋白中的极化,NMII的失活提供了
pro-arp2/3信号传导的“风暴中的端口”介导了更有生产力的突出。
目标2:探测触觉感测和信号扩增的动力学。我们假设这一点
ECM梯度的差异整联蛋白参与通过反馈驱动明显的细胞迁移偏见
Pro-ARP2/3信号轴的扩增。如果是这样,这意味着触觉梯度能够
间充质细胞中的偏置pro-arp2/3信号传导在某种程度上趋化梯度不能。
AIM 3:在多提示方案中定义梯度协同作用和优先级。尽管有相关性
为了引导间充质细胞体内,完全未知细胞对共阳性的反应
在受控设置中的两种梯度类型中。考虑趋化性和触觉如何影响
成纤维细胞中肌动蛋白细胞骨架的动态调节,我们假设这两个梯度
在平行方向呈现时协同作用。通过在反平行或
正交取向,我们将确定细胞如何优先考虑两种类型的提示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason M. Haugh其他文献
Effectiveness factor for spatial gradient sensing in living cells
- DOI:
10.1016/j.ces.2006.04.041 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:
- 作者:
Jason M. Haugh;Ian C. Schneider - 通讯作者:
Ian C. Schneider
Jason M. Haugh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason M. Haugh', 18)}}的其他基金
Multi-cue Guidance of Mesenchymal Cell Migration
间充质细胞迁移的多线索引导
- 批准号:
10185787 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
Multi-cue Guidance of Mesenchymal Cell Migration
间充质细胞迁移的多线索引导
- 批准号:
10552599 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
NC STATE MOLECULAR BIOTECHNOLOGY TRAINING PROGRAM (MBTP)
北卡罗来纳州立大学分子生物技术培训计划 (MBTP)
- 批准号:
10393140 - 财政年份:2020
- 资助金额:
$ 28.88万 - 项目类别:
NC STATE MOLECULAR BIOTECHNOLOGY TRAINING PROGRAM (MBTP)
北卡罗来纳州立大学分子生物技术培训计划 (MBTP)
- 批准号:
10650313 - 财政年份:2020
- 资助金额:
$ 28.88万 - 项目类别:
NC STATE MOLECULAR BIOTECHNOLOGY TRAINING PROGRAM (MBTP)
北卡罗来纳州立大学分子生物技术培训计划 (MBTP)
- 批准号:
10197961 - 财政年份:2020
- 资助金额:
$ 28.88万 - 项目类别:
NC STATE MOLECULAR BIOTECHNOLOGY TRAINING PROGRAM (MBTP)
北卡罗来纳州立大学分子生物技术培训计划 (MBTP)
- 批准号:
10434091 - 财政年份:2020
- 资助金额:
$ 28.88万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Thick and Thin Filament Dysfunction in Obese Heart Failure with Preserved Ejection Fraction
射血分数保留的肥胖性心力衰竭的粗细丝功能障碍
- 批准号:
10678204 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Regulation of GluN2B-NMDA Receptors by Interactions with the Actin Cytoskeleton
通过与肌动蛋白细胞骨架相互作用调节 GluN2B-NMDA 受体
- 批准号:
10606121 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Dissecting the Molecular Link Between Stroke, Actin, and Alzheimer's Disease
剖析中风、肌动蛋白和阿尔茨海默病之间的分子联系
- 批准号:
10772704 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别: