Cancer Biology Research Test-Bed Unit 2: Effects of cell-intrinsic and cell-extrinsic variations in lipid metabolism on metastasis patterns
癌症生物学研究试验台单元 2:脂质代谢的细胞内在和细胞外在变化对转移模式的影响
基本信息
- 批准号:10374653
- 负责人:
- 金额:$ 33.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-24 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAntioxidantsBedsBiological AssayBloodBrainCancer BiologyCancer ControlCell DeathCell ProliferationCell SurvivalCellsClinical TrialsDataDistantEnvironmentExhibitsExposure toFlow CytometryHydrogenImageImmunocompetentImmunocompromised HostImpairmentIn SituInterventionKidneyLipid PeroxidesLipidsLiverLocationLungLymphMelanoma CellMembraneMetabolicMitochondriaMonounsaturated Fatty AcidsMusMutationNeoplasm MetastasisOleic AcidsOrganOxidative StressPatientsPatternPhospholipidsPolyunsaturated Fatty AcidsProcessProliferatingPropertyReactive Oxygen SpeciesResearchResistanceResolutionSiteTestingTissuesVariantXenograft procedurecancer cellcellular imagingdietaryexperiencein vivolipid metabolismlipidomicslymphatic vesselmelanomaoxidationresponsetechnology developmenttumor progression
项目摘要
Project Summary
Metastasis is a highly inefficient process in which few disseminating cancer cells survive. We discovered that
melanoma metastasis is limited by oxidative stress. Reactive Oxygen Species (ROS) increase dramatically in
melanoma cells as they metastasize through the blood. The rare cells that survive undergo reversible
metabolic changes that confer oxidative stress resistance. Consistent with this, large clinical trials found that
patients administered anti-oxidants were more likely to die of cancer than control patients. Cancer cells,
including melanoma, often metastasize regionally through lymphatic vessels before metastasizing systemically
through the blood. We recently discovered that melanoma cells in lymph experience less oxidative stress and
form more metastases than melanoma cells in blood. This was true of patient-derived melanomas growing in
immunocompromised mice as well as mouse melanomas growing in immunocompetent mice. The oxidative
stress kills melanoma cells in the blood by inducing ferroptosis, a form of cell death marked by the
accumulation of lipid peroxides. One of the ways in which lymph protects from ferroptosis is by having high
levels of the monounsaturated fatty acid (MUFA), oleic acid, which protects cells from lipid oxidation by
reducing the abundance of polyunsaturated fatty acids (PUFAs) in membrane phospholipids. The more
abundant PUFAs are in membrane phospholipids, the more sensitive cells are to ferroptosis. Melanoma cells
are thus exposed to different lipid environments in different locations as they metastasize and these cell-
extrinsic changes influence their survival. There are also cell-intrinsic differences among melanomas that
influence their response to these environments: melanomas from different patients differ in the sites to which
they metastasize upon xenografting. We hypothesize that these differences in metastasis patterns result from
cell-intrinsic differences in lipid metabolism that influence their sensitivity to ferroptosis in response to the lipid
environments they encounter as they metastasize. Nonetheless, we have never been able to image the fates
of metastasizing melanoma cells in vivo, limiting our understanding of how oxidative stress affects these cells.
A critical barrier is the efficient imaging of entire organs to identify rare melanoma cells at the earliest stages of
metastasis. The lack of subcellular resolution in whole organs also impairs our ability to explore the ways in
which oxidative stress influences cell survival and proliferation. Both of these limitations will be addressed by
the Technology Development Unit (TDU) of this consortium, which is developing the ability to perform high
throughput imaging of whole, cleared organs to assess the survival, proliferation, and localization of rare
melanoma cells after metastasis. We will validate these imaging data by flow cytometry. By combining single
cell imaging (Aim 1) with metabolic assays, we will characterize cell-extrinsic (Aim 2) and cell-intrinsic (Aims 1,
3) mechanisms that regulate the earliest stages of metastasis.
项目摘要
转移是一个高效的过程,其中很少有传播癌细胞的生存。我们发现了这一点
黑色素瘤转移受到氧化应激的限制。活性氧(ROS)在
黑色素瘤细胞通过血液转移。生存的稀有细胞可逆
代谢变化,赋予氧化应激抗性。与此相一致,大型临床试验发现
与对照患者相比,服用抗氧化剂的患者更有可能死于癌症。癌细胞,
包括黑色素瘤在内,通常会通过淋巴管进行区域转移,然后全身转移
通过血液。我们最近发现,淋巴中的黑色素瘤细胞经历较少的氧化应激和
在血液中比黑色素瘤细胞形成更多的转移。在患者衍生的黑色素瘤中生长在
免疫功能低下的小鼠以及在免疫能力小鼠中生长的小鼠黑色素瘤。氧化
压力通过诱导铁铁病杀死血液中的黑色素瘤细胞,这是一种细胞死亡形式
脂质过氧化物的积累。淋巴保护免受铁铁作用的方法之一是高
单不饱和脂肪酸(MUFA)的水平,油酸,可通过保护细胞免受脂质氧化的影响
减少膜磷脂中多不饱和脂肪酸(PUFAS)的丰度。更多
大量的pufas在膜磷脂中,更敏感的细胞是屈服。黑色素瘤细胞
因此,在转移时会暴露于不同位置的不同脂质环境,这些细胞 -
外在变化会影响其生存。黑色素瘤之间也存在细胞中性差异
影响他们对这些环境的反应:来自不同患者的黑色素瘤在所在地不同
它们在异武施thing上转移。我们假设转移模式的这些差异是由
脂质代谢的细胞中性差异会影响其对脂质的敏感性的敏感性
他们转移时遇到的环境。尽管如此,我们从来没有能够为命运做出成像
在体内转移黑色素瘤细胞的,限制了我们对氧化应激如何影响这些细胞的理解。
关键障碍是整个器官的有效成像,以鉴定最早的稀有黑素瘤细胞
转移。整个器官缺乏亚细胞分辨率也损害了我们探索方式的能力
氧化应激影响细胞的存活和增殖。这两个限制将由
该财团的技术开发单元(TDU),正在发展高度的能力
整体,清除器官的吞吐量成像,以评估罕见的生存,增殖和定位
转移后黑色素瘤细胞。我们将通过流式细胞仪验证这些成像数据。通过组合单
细胞成像(AIM 1)带有代谢测定法,我们将表征细胞超支(AIM 2)和细胞中心(AIMS 1,
3)调节转移最早阶段的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEAN J MORRISON其他文献
SEAN J MORRISON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEAN J MORRISON', 18)}}的其他基金
Cancer Biology Research Test-Bed Unit 2: Effects of cell-intrinsic and cell-extrinsic variations in lipid metabolism on metastasis patterns
癌症生物学研究试验台单元 2:脂质代谢的细胞内在和细胞外在变化对转移模式的影响
- 批准号:
10491356 - 财政年份:2021
- 资助金额:
$ 33.77万 - 项目类别:
Cancer Biology Research Test-Bed Unit 2: Effects of cell-intrinsic and cell-extrinsic variations in lipid metabolism on metastasis patterns
癌症生物学研究试验台单元 2:脂质代谢的细胞内在和细胞外在变化对转移模式的影响
- 批准号:
10684866 - 财政年份:2021
- 资助金额:
$ 33.77万 - 项目类别:
The Metabolic Regulation of Hematopoietic Stem Cell Function
造血干细胞功能的代谢调节
- 批准号:
10560625 - 财政年份:2019
- 资助金额:
$ 33.77万 - 项目类别:
The Metabolic Regulation of Hematopoietic Stem Cell Function
造血干细胞功能的代谢调节
- 批准号:
10343751 - 财政年份:2019
- 资助金额:
$ 33.77万 - 项目类别:
The Metabolic Regulation of Hematopoietic Stem Cell Function
造血干细胞功能的代谢调节
- 批准号:
9914262 - 财政年份:2019
- 资助金额:
$ 33.77万 - 项目类别:
The regulation of protein synthesis in stem cells
干细胞中蛋白质合成的调控
- 批准号:
8997792 - 财政年份:2015
- 资助金额:
$ 33.77万 - 项目类别:
相似国自然基金
生物抗氧化剂对纤维蛋白原氧化损伤的保护以及纤维化过程的影响
- 批准号:21575102
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
氢分子在妊娠期高血压疾病中对MAPK信号通路的影响
- 批准号:81300500
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
天然酚类抗氧化剂对果蔬表面二噻农杀菌剂光化学转化的影响及其机理研究
- 批准号:21207102
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
抗老化变压器油及其对绝缘纸老化影响的研究
- 批准号:50677073
- 批准年份:2006
- 资助金额:32.0 万元
- 项目类别:面上项目
TA9901配伍EGb761对Tg2576转基因鼠脑内β淀粉样蛋白沉积的影响及其机制
- 批准号:30470904
- 批准年份:2004
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
Biology the initiator: Harnessing Reactive Oxygen Species for Biocompatible Polymerization
生物学引发者:利用活性氧进行生物相容性聚合
- 批准号:
10667740 - 财政年份:2023
- 资助金额:
$ 33.77万 - 项目类别:
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 33.77万 - 项目类别:
The role of NQR in ROS-dependent virulence regulation in Vibrio cholerae
NQR 在霍乱弧菌 ROS 依赖性毒力调节中的作用
- 批准号:
10721326 - 财政年份:2023
- 资助金额:
$ 33.77万 - 项目类别:
Role of mitochondrial GDAP1 in Alzheimer's disease
线粒体 GDAP1 在阿尔茨海默病中的作用
- 批准号:
10739858 - 财政年份:2023
- 资助金额:
$ 33.77万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 33.77万 - 项目类别: