Machine learning-based biomechanical analysis for thoracic aortic aneurysm rupture risk assessment
基于机器学习的生物力学分析胸主动脉瘤破裂风险评估
基本信息
- 批准号:10365444
- 负责人:
- 金额:$ 60.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-03 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdultAneurysmAortaAortic AneurysmBiomechanicsCaliberCalibrationCardiovascular systemCause of DeathCessation of lifeCharacteristicsChestClassificationClinicalClinical TrialsComputer ModelsComputer softwareConsumptionDataData FilesData SetDeath RateDevelopmentDevicesDiseaseDissectionEvaluation StudiesEventFaceFinite Element AnalysisFollow-Up StudiesGeneral PopulationGeometryGoalsHealthcare SystemsHumanImageLearningMachine LearningMagicMeasuresMedical RecordsModelingNatural Language ProcessingNoiseOperative Surgical ProceduresOutputPatientsPerformancePopulationPrevalenceProbabilityProcessRiskRisk AssessmentRuptureRuptured thoracic aortic aneurysmShapesSourceStressSymptomsTechniquesTestingThoracic Aortic AneurysmThoracic aortaTimeTissue SampleUncertaintyValidationVisualizationX-Ray Computed Tomographybasebiomechanical testclinical applicationcostdeep neural networkdensityeffectiveness testinghigh riskimprovedin vivoindexingindividual patientinnovationinsightmachine learning modelmethod developmentmixed realitynovelopen sourcepreventprogramsreal time modelreconstructionrepairedspeech recognition
项目摘要
PROJECT SUMMARY
Aortic aneurysm disease ranks consistently in the top 20 causes of death in the U.S.
population. Thoracic aortic aneurysm (TAA) is a leading cause of death in adults. The progression
of TAA is a silent process, yet rupture/dissection can occur suddenly, which often causes death.
The deadly events are preventable by elective surgical repair, and the current criterion for surgical
intervention states that surgery should be performed when TAA maximum diameter reaches 5 to
5.5 cm. However, this criterion cannot assess the risk of smaller TAAs (diameter≤5cm). It is
estimated that there are millions of TAA patients in the U.S. with smaller TAAs, and these patients
are unfortunately ignored by the current criterion. Thus, in this project, we propose an innovative
approach of integrating machine learning (ML) and computational biomechanics for risk
assessment of smaller TAAs. To achieve this goal, we will develop (1) ML models for automated
thoracic aorta geometry reconstruction from 3D clinical CT images, which will enable a fast and
streamlined analysis of TAA risk, (2) ML models for realtime TAA stress analysis, and (3) a
probabilistic risk index that fuses the measured and computed patient characteristics (e.g.
geometry, stress, material strength, etc) and takes into account uncertainties from different
sources. The proposed approach will be developed and validated on an existing dataset of 1000
patients and a new dataset to be assembled from a longitudinal follow-up study of 600 patients,
which will be the first large-scale study of machine learning-based biomechanical analysis for TAA
risk assessment. This study will lead to a breakthrough in the fields of cardiovascular
computational modeling and applied machine learning, provide new insights on how to better
assess TAA risk, and reduce death by the silent and sudden killer of TAA disease.
项目摘要
在美国,主动脉瘤疾病始终在死亡的前20个原因中排名
人口。胸动脉瘤(TAA)是成人死亡的主要原因。进展
TAA是一个沉默的过程,但可能会突然发生破裂/解剖,这通常会导致死亡。
致命事件是通过选修手术修复和手术标准预防的
干预指出,当TAA最大直径达到5至5时,应进行手术
5.5厘米。但是,该标准无法评估较小的TAA(直径≤5cm)的风险。这是
据估计,美国有数百万的TAA患者,TAA较小,这些患者
不幸的是,当前标准忽略了。在这个项目中,我们提出了创新的
整合机器学习(ML)和风险计算生物力学的方法
评估较小的TAA。为了实现这一目标,我们将开发(1)自动化的ML模型
从3D临床CT图像重建胸主动脉几何形状,这将使快速且能够
简化了TAA风险分析,(2)用于实时TAA应力分析的ML模型和(3)A
概率风险指数融合了测量和计算的患者特征(例如
几何,压力,物质强度等)并考虑到不同的不确定性
来源。建议的方法将在1000的现有数据集中开发和验证
患者和一个新数据集将从600名患者的纵向随访研究中组装,
这将是对TAA的基于机器学习的生物力学分析的首次大规模研究
风险评估。这项研究将导致心血管领域的突破
计算建模和应用机器学习,提供有关如何更好的新见解
评估TAA风险,并通过TAA疾病的沉默和突然杀手减少死亡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Liang其他文献
Liang Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Liang', 18)}}的其他基金
Functional circuitry and computation of the visual thalamus
视觉丘脑的功能电路和计算
- 批准号:
10577537 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Machine learning-based biomechanical analysis for thoracic aortic aneurysm rupture risk assessment
基于机器学习的生物力学分析胸主动脉瘤破裂风险评估
- 批准号:
10534234 - 财政年份:2021
- 资助金额:
$ 60.47万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Machine learning-based biomechanical analysis for thoracic aortic aneurysm rupture risk assessment
基于机器学习的生物力学分析胸主动脉瘤破裂风险评估
- 批准号:
10534234 - 财政年份:2021
- 资助金额:
$ 60.47万 - 项目类别:
4D Virtual Catheter (vCath) Assessment of Hemodynamic Pathways in Aortopathy Pathogenesis
4D 虚拟导管 (vCath) 评估主动脉病发病机制中的血流动力学通路
- 批准号:
10092217 - 财政年份:2020
- 资助金额:
$ 60.47万 - 项目类别:
Mechanisms of Basement Membrane Regulation During Angiogenesis
血管生成过程中基底膜的调节机制
- 批准号:
10002605 - 财政年份:2019
- 资助金额:
$ 60.47万 - 项目类别:
Regulation of arterial phenotype by perivascular adipose tissue in cardiometabolic disease
心脏代谢疾病中血管周围脂肪组织对动脉表型的调节
- 批准号:
10443027 - 财政年份:2018
- 资助金额:
$ 60.47万 - 项目类别: