A novel family of conserved glyoxal toxicity response proteins.
一个新的保守乙二醛毒性反应蛋白家族。
基本信息
- 批准号:10365682
- 负责人:
- 金额:$ 44.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAmino AcidsAnabolismAntibioticsAreaArginineAssimilationsAtherosclerosisBacteriaBindingBinding ProteinsBiological AssayCalcium-Binding ProteinsCellsCellular StressCellular StructuresComplexCrystallographyCysteineDataDiabetes MellitusDiseaseDrug Metabolic DetoxicationEnzymesEukaryotaExcisionFamilyFluorescence Resonance Energy TransferGene Expression RegulationGenerationsGenesGeneticGlycolysisGlyoxalGoalsGrantGrowthHealthHeart DiseasesHemeHeme IronHistidineHomeostasisHumanHypertensionImageIronKnowledgeLifeLightLiteratureLongevityLysineMalignant NeoplasmsMapsMass Spectrum AnalysisMembraneMetabolicMetabolismMethodsMicroscopyMixed Function OxygenasesModificationMolecularMutationNamesNatureNerve DegenerationNeuronsNuclear Magnetic ResonanceNutrientOperonOrganismOxidative StressPathway interactionsPatternPlanet EarthPlayPolysaccharidesPredispositionProcessProteinsPseudomonasPseudomonas aeruginosaPyruvaldehydeQuinolonesRegulationResearchResolutionRoleSideSignal PathwaySignal TransductionStressStructureSystemTechniquesTimeToxic effectToxinVesicleVirulence FactorsWorkantimicrobialbiological adaptation to stresscell envelopeexperimental studyheme-binding proteinhuman diseasemutantnervous system disordernovelnovel antibiotic classpathogenic bacteriaprotein functionquorum sensingremediationresponsestemtranscriptome sequencinguptakevirtual
项目摘要
Advanced Glycan End Products (AGEs) are toxic and highly reactive dicarbonyl molecules
produced by most life on earth from routine metabolic processes. As such, conserved and
dedicated detoxifying systems have emerged for dicarbonyl removal. Owing to their importance,
these removal systems are required to maintain longevity, thereby emphasizing the importance
of dicarbonyl detoxification in maintaining health. One of the most prominent dicarbonyl species
is glyoxal, which is predominantly produced as a byproduct of glycolysis. Glyoxal acts by
mounting specific attacks on certain amino acids, namely arginines, cysteines, histidines and
lysines in key proteins, thereby adversely altering protein function. In humans, these
modifications can result in many diseased states, including: cancer, diabetes, nervous system
disorders, heart disease, hypertension, atherosclerosis and aging. Unfortunately, although
dicarbonyl stress-related toxicity is now regarded as important as oxidative stress, knowledge
about how cells are able to detect and respond to glyoxal buildup is, by comparison, severely
lacking. Our lab has discovered a novel class of Antibiotic Monooxygenase (ABM) domains that
we hypothesize sense and respond to glyoxal and related dicarbonyls from bacteria to humans.
This project proposes to elucidate the mechanism by which one of these ABM domains, we
named Glyoxal-ABM Domain 1 (GAD1) responds to glyoxal in the bacterial pathogen
Pseudomonas aeruginosa. We have thus far shown that GAD1 from P. aeruginosa, which is co-
transcribed with the glyoxal detoxification enzyme GloA2, binds heme directly and is also
covalently modified by glyoxal on a conserved arginine residue (Arg49). We hypothesize that
GAD1 and its many homologs are specifically modified on conserved residues, which, in turn,
signals to switch cellular metabolic flux away from glycolysis other pathways unable to produce
the glyoxal toxin. Our studies here will Aim to (1) map GAD1 regulation, (2) determine its cellular
distribution and its interactome and (3) solve the structures of its apo and holo forms, and in
complex with interacting partners in P. aeruginosa. Studying GAD1 in P. aeruginosa is expected
to reveal novel pathways that have potential as new antimicrobial targets, and at the same time
advance our basic understanding of glyoxal toxicity sensing in humans and other multicellular
organisms.
高级聚糖终产物(年龄)是有毒且高反应性的双骨分子
由地球上的大多数生命从常规代谢过程中产生。因此,保守和
专用的排毒系统已出现用于去除双骨的去除。由于它们的重要性,
这些拆除系统需要保持寿命,从而强调了重要性
维持健康方面的双骨解毒。最杰出的双龙酮物种之一
是乙醇,主要作为糖酵解的副产品产生。甘氨酸作用
对某些氨基酸的特定攻击,即精氨酸,半胱氨酸,组氨酸和
关键蛋白质中的赖氨酸,从而不利地改变了蛋白质功能。在人类中,这些
修改可能导致许多患病状态,包括:癌症,糖尿病,神经系统
疾病,心脏病,高血压,动脉粥样硬化和衰老。不幸的是,虽然
现在认为与毒胁迫相关的毒性与氧化应激一样重要,知识很重要
相比之下,关于细胞如何检测和响应乙二醛的堆积是严重的
缺乏。我们的实验室发现了一种新型的抗生素单加氧酶(ABM)域,
我们假设感官并对从细菌到人类的乙二醛和相关的双骨反应反应。
该项目建议阐明这些ABM域之一的机制,我们
名为乙二醇-ABM结构域1(GAD1)对细菌病原体中的乙二醛反应
铜绿假单胞菌。到目前为止,我们已经表明了来自铜绿假单胞菌的GAD1,这是
用乙二醛解毒酶GloA2转录,直接结合血红素,也是
通过乙二醛在保守的精氨酸残基上共价修饰(ARG49)。我们假设这一点
GAD1及其许多同源物是针对保守残留物进行的,而保守残留物又是
信号将细胞代谢通量转移到糖酵解其他途径无法产生的信号
乙二醇毒素。我们在这里的研究将旨在(1)MAP GAD1调节,(2)确定其细胞
分布及其相互作用组,(3)解决其apo和holo形式的结构,以及
与铜绿假单胞菌中的相互作用伙伴的复合物。预计在铜绿假单胞菌中研究GAD1
揭示具有新的抗菌靶标的潜力的新型途径,同时
促进我们对人类和其他多细胞的乙糖毒性感应的基本理解
有机体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW T ULIJASZ其他文献
ANDREW T ULIJASZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW T ULIJASZ', 18)}}的其他基金
A novel family of conserved glyoxal toxicity response proteins.
一个新的保守乙二醛毒性反应蛋白家族。
- 批准号:
10555214 - 财政年份:2022
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10001426 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10216972 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10444904 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10666412 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
相似国自然基金
特定肠道菌种在氨基酸调控脂质代谢中的作用与机制研究
- 批准号:82300940
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群与高血压严重程度的关联及通过氨基酸代谢调控的作用机制研究
- 批准号:82304211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磷酸酶SHP2调控成纤维细胞支链氨基酸代谢在炎症性肠病相关肠纤维化中的作用机制研究
- 批准号:82300637
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
化瘀通络法通过SATB1/JUNB介导“氨基酸代谢网-小胶质细胞极化”调控脑缺血神经功能恢复的机制研究
- 批准号:82374172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于乙酰化修饰探究支链氨基酸调控大口黑鲈肝脏脂代谢的分子机制
- 批准号:32303023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The regulation of cancer and aging by methionine
蛋氨酸对癌症和衰老的调节
- 批准号:
10750559 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
Sestrins-mediated integration of leucine and exercise benefits for mitochondrial homeostasis
Sestrins介导的亮氨酸整合和运动对线粒体稳态的益处
- 批准号:
10734830 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
A novel family of conserved glyoxal toxicity response proteins.
一个新的保守乙二醛毒性反应蛋白家族。
- 批准号:
10555214 - 财政年份:2022
- 资助金额:
$ 44.59万 - 项目类别:
Coordinated mechanisms to rescue bioenergetics and sarcopenia in aging
拯救衰老过程中生物能学和肌肉减少症的协调机制
- 批准号:
10672292 - 财政年份:2022
- 资助金额:
$ 44.59万 - 项目类别:
Control of RNA methylation by growth signals through the mTORC1 pathway
通过 mTORC1 途径通过生长信号控制 RNA 甲基化
- 批准号:
10469579 - 财政年份:2021
- 资助金额:
$ 44.59万 - 项目类别: