Genomic incorporation of stapled peptides for cost effective discovery and synthesis of novel therapeutics
钉合肽的基因组整合,以经济有效的方式发现和合成新疗法
基本信息
- 批准号:10360415
- 负责人:
- 金额:$ 6.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAmino AcidsAmino Acyl-tRNA SynthetasesBacteriaBacteriophagesBiological AssayBiological AvailabilityBiomimeticsCapsid ProteinsCellsCharacteristicsChemicalsCodon NucleotidesDehydrationDirected Molecular EvolutionDrug KineticsEnzymesEvolutionFDA approvedFaceGenerationsGenomeGenomicsGoalsHuman PathologyHydro-LyasesIn VitroLibrariesLigaseMalignant NeoplasmsMedicineMethodsMinorMolecularOrganismPeptide HydrolasesPeptide LibraryPeptide SynthesisPeptidesPermeabilityPharmaceutical PreparationsPhasePredispositionProchlorococcusProductionPropertyProteinsRNA, Transfer, Amino Acid-SpecificReactionResistanceRoboticsSchemeSerineSiteSolidSpecificitySpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStructureSulfhydryl CompoundsTP53 geneTherapeuticThreonineTransfer RNATumor Suppressor ProteinsValidationbasechromatin remodelingcostcost effectivedesignimprovedin vivoinhibitorinterestiterative designmutantnovelnovel therapeuticspeptide Apeptide drugprotein protein interactionsmall moleculesmall molecule inhibitorstapled peptidetherapeutic targetthioethertooltranscription factorunnatural amino acids
项目摘要
ABSTRACT
In the era of genome medicine, we are able to precisely identify the molecular susceptibilities of a range of
human pathologies, including cancer. However, many of the bona fide drivers of cancer—transcription factors,
tumor suppressors, and chromatin remodelers (such as p53, myc, and SWI/SNF) cannot be readily targeted by
traditional small-molecule active-site inhibitors, as their functions are modulated by protein interactions. Indeed,
protein-protein interactions constitute nearly 90% of all medicinal targets of interest, yet peptides inhibitors –
which effectively target these interactions – account for only 2% of FDA-approved drugs. Peptide therapies
face major challenges including costly synthesis, in vivo instability from protease degradation, and poor
bioavailability. To remedy these issues, “stapled-peptides” have been proposed to improve both the potency
and pharmacokinetics of such therapies. Unfortunately, these stapled peptides— which contain non-natural
amino acids to covalently maintain a helical structure— cannot be genomically encoded because their
production requires additional chemical steps, which drastically limits the ability to discover and synthesize new
biomimetic peptide therapies and tools. Therefore, the ability to iteratively design, genomically encode, and
reliably synthesize a stable class of these molecules in vivo would yield novel chemical probes for a variety of
protein-protein interactions in cancer.
This proposal seeks to genomically-encode the production of therapeutically relevant, cell-permeable stapled
peptides in a bacterial organism. This would allow for the generation of screenable peptide-libraries, drastically
reduce the cost of synthesis, and ultimately provide a discovery platform for an entirely new class of protein-
protein inhibitors. Utilizing high-throughput, robotic phage-assisted continuous directed evolution (roboPACE),
an in vivo mechanism to produce cell-permeable bio-mimetic peptides will be developed. First, a novel thio-
ether stapling mechanism will be characterized in vitro utilizing a novel non-canonical amino acid [Aim 1].
Second, efficient in vivo incorporation of this amino acid into proteins will be evolved in high-throughput with
roboPACE [Aim 2]. Finally, a promiscuous bacterial synthetase enzyme, will be evolved to efficiently catalyze
the stapling mechanism in order to genomically-encode stapled-peptide production [Aim 3]. Collectively, this
proposal will extend the breadth and throughput of ncAA design and incorporation, and ultimately develop an in
vivo peptide-stapling mechanism in order to treat and characterize presently “undruggable” therapeutic targets
in cancer.
抽象的
在基因组医学时代,我们能够准确地确定一系列的分子敏感性
人类病理,包括癌症。但是,许多真正的癌症驱动因素 - 转录因素,
肿瘤补充剂和染色质改造(例如p53,MYC和SWI/SNF)不能轻易地针对
传统的小分子活性位点抑制剂,因为它们的功能是由蛋白质相互作用调节的。的确,
蛋白质蛋白质相互作用几乎占所有感兴趣的医学靶标的90%,但肽抑制剂 -
有效地针对这些相互作用 - 仅占FDA批准的药物的2%。肽疗法
面临主要挑战,包括昂贵的合成,蛋白酶降解的体内不稳定性和差
生物利用度。要记住这些问题,已经提出了“钉肽”来提高效力
和这种疗法的药代动力学。不幸的是,这些滞留的肽 - 包含非天然的肽
氨基酸以共价维持螺旋结构 - 不能在基因组上编码
生产需要其他化学步骤,这大大限制了发现和合成新的能力
仿生肽疗法和工具。因此,迭代设计的能力,基因编码和
可靠地在体内合成稳定的这些分子类别将产生新的化学问题
癌症中的蛋白质蛋白质相互作用。
该提案旨在基因组化治疗相关的,可渗透的钉子
细菌生物中的肽。这将允许生成可筛选的肽纤维,急剧
降低合成成本,并最终为一类全新的蛋白质提供发现平台
蛋白质抑制剂。利用高通量,机器人噬菌体辅助连续的定向进化(Robopace),
将开发出一种生产可渗透生物模拟胡椒体的体内机制。首先,一个新颖的硫
将使用一种新型的非典型氨基酸(AIM 1],将在体外表征醚固定机制。
其次,在该氨基酸中掺入蛋白质中的体内有效的体内将在高通量中进化
Robopace [AIM 2]。最后,将进化为有效催化的混杂细菌合成酶
固定机制是为了基于基因模型上分阶段的肽产生[AIM 3]。总的来说,这
提案将扩大NCAA设计和公司的广度和吞吐量,并最终发展
为了治疗和特征当前“不良”的治疗靶标的体内胡椒盖机制
在癌症中。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling high-throughput biology with flexible open-source automation.
- DOI:10.15252/msb.20209942
- 发表时间:2021-03
- 期刊:
- 影响因子:9.9
- 作者:Chory EJ;Gretton DW;DeBenedictis EA;Esvelt KM
- 通讯作者:Esvelt KM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emma J Chory其他文献
Emma J Chory的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emma J Chory', 18)}}的其他基金
Genomic incorporation of stapled peptides for cost effective discovery and synthesis of novel therapeutics
钉合肽的基因组整合,以经济有效的方式发现和合成新疗法
- 批准号:
9909733 - 财政年份:2020
- 资助金额:
$ 6.98万 - 项目类别:
HIJACKING OF SUPER-ENHANCERS FOR CANCER-SPECIFIC THERAPEUTICS
劫持癌症特异性治疗的超级增强剂
- 批准号:
9050039 - 财政年份:2016
- 资助金额:
$ 6.98万 - 项目类别:
HIJACKING OF SUPER-ENHANCERS FOR CANCER-SPECIFIC THERAPEUTICS
劫持癌症特异性治疗的超级增强剂
- 批准号:
9248203 - 财政年份:2016
- 资助金额:
$ 6.98万 - 项目类别:
相似国自然基金
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
射频协同纳他霉素干扰氨基酸转运高效杀灭黑曲霉的分子机制研究
- 批准号:32302279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
特定肠道菌种在氨基酸调控脂质代谢中的作用与机制研究
- 批准号:82300940
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ybx3-Slc3a2介导的氨基酸转运在p53突变T细胞淋巴瘤发生发展中的作用机制研究
- 批准号:82300216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胃肠道微生物宏基因组的氨基酸消旋酶挖掘及分析
- 批准号:32360034
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 6.98万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 6.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)