Genomic incorporation of stapled peptides for cost effective discovery and synthesis of novel therapeutics
钉合肽的基因组整合,以经济有效的方式发现和合成新疗法
基本信息
- 批准号:10360415
- 负责人:
- 金额:$ 6.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAmino AcidsAmino Acyl-tRNA SynthetasesBacteriaBacteriophagesBiological AssayBiological AvailabilityBiomimeticsCapsid ProteinsCellsCharacteristicsChemicalsCodon NucleotidesDehydrationDirected Molecular EvolutionDrug KineticsEnzymesEvolutionFDA approvedFaceGenerationsGenomeGenomicsGoalsHuman PathologyHydro-LyasesIn VitroLibrariesLigaseMalignant NeoplasmsMedicineMethodsMinorMolecularOrganismPeptide HydrolasesPeptide LibraryPeptide SynthesisPeptidesPermeabilityPharmaceutical PreparationsPhasePredispositionProchlorococcusProductionPropertyProteinsRNA, Transfer, Amino Acid-SpecificReactionResistanceRoboticsSchemeSerineSiteSolidSpecificitySpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStructureSulfhydryl CompoundsTP53 geneTherapeuticThreonineTransfer RNATumor Suppressor ProteinsValidationbasechromatin remodelingcostcost effectivedesignimprovedin vivoinhibitorinterestiterative designmutantnovelnovel therapeuticspeptide Apeptide drugprotein protein interactionsmall moleculesmall molecule inhibitorstapled peptidetherapeutic targetthioethertooltranscription factorunnatural amino acids
项目摘要
ABSTRACT
In the era of genome medicine, we are able to precisely identify the molecular susceptibilities of a range of
human pathologies, including cancer. However, many of the bona fide drivers of cancer—transcription factors,
tumor suppressors, and chromatin remodelers (such as p53, myc, and SWI/SNF) cannot be readily targeted by
traditional small-molecule active-site inhibitors, as their functions are modulated by protein interactions. Indeed,
protein-protein interactions constitute nearly 90% of all medicinal targets of interest, yet peptides inhibitors –
which effectively target these interactions – account for only 2% of FDA-approved drugs. Peptide therapies
face major challenges including costly synthesis, in vivo instability from protease degradation, and poor
bioavailability. To remedy these issues, “stapled-peptides” have been proposed to improve both the potency
and pharmacokinetics of such therapies. Unfortunately, these stapled peptides— which contain non-natural
amino acids to covalently maintain a helical structure— cannot be genomically encoded because their
production requires additional chemical steps, which drastically limits the ability to discover and synthesize new
biomimetic peptide therapies and tools. Therefore, the ability to iteratively design, genomically encode, and
reliably synthesize a stable class of these molecules in vivo would yield novel chemical probes for a variety of
protein-protein interactions in cancer.
This proposal seeks to genomically-encode the production of therapeutically relevant, cell-permeable stapled
peptides in a bacterial organism. This would allow for the generation of screenable peptide-libraries, drastically
reduce the cost of synthesis, and ultimately provide a discovery platform for an entirely new class of protein-
protein inhibitors. Utilizing high-throughput, robotic phage-assisted continuous directed evolution (roboPACE),
an in vivo mechanism to produce cell-permeable bio-mimetic peptides will be developed. First, a novel thio-
ether stapling mechanism will be characterized in vitro utilizing a novel non-canonical amino acid [Aim 1].
Second, efficient in vivo incorporation of this amino acid into proteins will be evolved in high-throughput with
roboPACE [Aim 2]. Finally, a promiscuous bacterial synthetase enzyme, will be evolved to efficiently catalyze
the stapling mechanism in order to genomically-encode stapled-peptide production [Aim 3]. Collectively, this
proposal will extend the breadth and throughput of ncAA design and incorporation, and ultimately develop an in
vivo peptide-stapling mechanism in order to treat and characterize presently “undruggable” therapeutic targets
in cancer.
抽象的
在基因组医学时代,我们能够精确识别一系列疾病的分子敏感性
然而,许多癌症的真正驱动因素——转录因子,
肿瘤抑制因子和染色质重塑因子(例如 p53、myc 和 SWI/SNF)不能轻易被靶向
传统的小分子活性位点抑制剂,因为它们的功能是通过蛋白质相互作用调节的。
蛋白质-蛋白质相互作用构成了所有感兴趣的医学靶点的近 90%,但肽抑制剂 –
有效针对这些相互作用的药物——仅占 FDA 批准的肽疗法药物的 2%。
面临重大挑战,包括合成成本高、蛋白酶降解造成的体内不稳定以及质量差
为了解决这些问题,人们提出了“钉合肽”来提高这两种功效。
不幸的是,这些钉合肽含有非天然物质。
共价维持螺旋结构的氨基酸——不能被基因组编码,因为它们
生产需要额外的化学步骤,这极大地限制了发现和合成新材料的能力
因此,迭代设计、基因组编码和开发的能力。
在体内可靠地合成一类稳定的分子将产生针对多种分子的新型化学探针
癌症中的蛋白质-蛋白质相互作用。
该提案旨在对治疗相关的、细胞渗透性缝合的生产进行基因组编码
这将允许产生可筛选的肽库,这是戏剧性的。
降低合成成本,并最终为全新类别的蛋白质提供发现平台
利用高通量、机器人噬菌体辅助连续定向进化(roboPACE),
首先,将开发一种生产可渗透细胞的仿生肽的体内机制。
将利用一种新型非规范氨基酸在体外表征醚装订机制[目标 1]。
其次,这种氨基酸在体内有效掺入蛋白质的方法将以高通量的方式发展
roboPACE [目标 2] 最终,将进化出一种混杂的细菌合成酶,以有效催化。
装订机制,以便对装订肽生产进行基因组编码[目标 3]。
该提案将扩大 NCAA 设计和整合的广度和吞吐量,并最终开发出一个
体内肽装订机制,以治疗和表征目前“不可成药”的治疗靶点
在癌症中。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling high-throughput biology with flexible open-source automation.
- DOI:10.15252/msb.20209942
- 发表时间:2021-03
- 期刊:
- 影响因子:9.9
- 作者:Chory EJ;Gretton DW;DeBenedictis EA;Esvelt KM
- 通讯作者:Esvelt KM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emma J Chory其他文献
Emma J Chory的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emma J Chory', 18)}}的其他基金
Genomic incorporation of stapled peptides for cost effective discovery and synthesis of novel therapeutics
钉合肽的基因组整合,以经济有效的方式发现和合成新疗法
- 批准号:
9909733 - 财政年份:2020
- 资助金额:
$ 6.98万 - 项目类别:
HIJACKING OF SUPER-ENHANCERS FOR CANCER-SPECIFIC THERAPEUTICS
劫持癌症特异性治疗的超级增强剂
- 批准号:
9050039 - 财政年份:2016
- 资助金额:
$ 6.98万 - 项目类别:
HIJACKING OF SUPER-ENHANCERS FOR CANCER-SPECIFIC THERAPEUTICS
劫持癌症特异性治疗的超级增强剂
- 批准号:
9248203 - 财政年份:2016
- 资助金额:
$ 6.98万 - 项目类别:
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Genomic incorporation of stapled peptides for cost effective discovery and synthesis of novel therapeutics
钉合肽的基因组整合,以经济有效的方式发现和合成新疗法
- 批准号:
9909733 - 财政年份:2020
- 资助金额:
$ 6.98万 - 项目类别:
Unnatural Amino Acid Chemistry for Lysine Methyltransferase Substrate Discovery
赖氨酸甲基转移酶底物发现的非天然氨基酸化学
- 批准号:
9808782 - 财政年份:2019
- 资助金额:
$ 6.98万 - 项目类别:
Unnatural Amino Acid Chemistry for Lysine Methyltransferase Substrate Discovery
赖氨酸甲基转移酶底物发现的非天然氨基酸化学
- 批准号:
10006583 - 财政年份:2019
- 资助金额:
$ 6.98万 - 项目类别:
Development of an improved core technology for efficient genetic code expansion in biomedical research
开发改进的核心技术,用于生物医学研究中有效的遗传密码扩展
- 批准号:
10093096 - 财政年份:2019
- 资助金额:
$ 6.98万 - 项目类别:
Advancing genetic code expansion with Rosetta computational design: improving machinery for bioorthogonal amino acids
通过 Rosetta 计算设计推进遗传密码扩展:改进生物正交氨基酸的机制
- 批准号:
9189236 - 财政年份:2016
- 资助金额:
$ 6.98万 - 项目类别: