Leveraging machine learning to improve risk prediction for chemotherapy inducedneuropathy
利用机器学习改善化疗引起的神经病变的风险预测
基本信息
- 批准号:10364532
- 负责人:
- 金额:$ 68.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdjuvant ChemotherapyAdultAffectAgeAwarenessBiometryBreastCancer SurvivorshipCaringCharacteristicsChemotherapy-induced peripheral neuropathyChronicClinicalClinical DataClinical TrialsColorectal CancerCommunity HealthComplexComputer softwareDecision MakingDevelopmentDiagnosisDoseDose-LimitingElectronic Health RecordGoalsHealth Services ResearchImpairmentIndividualInterviewJournalsLeadLifeLimb structureMachine LearningMalignant NeoplasmsMental DepressionMethodsModelingMotorNatureNeuropathyNumbnessObesityOncologyOutcomePainPatient CarePatient PreferencesPatientsPeer ReviewPeripheral Nervous System DiseasesPharmacotherapyPlatinumPreventionProviderPublicationsQuality of lifeRaceReportingRiskRisk EstimateRisk FactorsSample SizeSavingsStatistical ModelsSymptomsTestingThinkingTimeTranslationsTreatment ProtocolsVinca Alkaloidsanalogassociated symptomcancer carecancer epidemiologycancer invasivenesscancer therapycancer typecare systemschemotherapychemotherapy induced neuropathyclinical decision-makingcommunity based practicecomorbiditydisabilityexperienceexperimental studyfall riskfollow-uphealth care settingshigh riskimprovedmachine learning methodmathematical abilitymedication safetyneurotoxicityolder patientpredictive modelingrisk predictionside effectsurvivorshiptaxanetooltreatment choicetreatment duration
项目摘要
Project Summary/Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) affects more than two-thirds of adults with
invasive cancer who receive select adjuvant chemotherapies (e.g., taxanes, platinum analogs).
Severe CIPN symptoms can lead to chemotherapy dose reductions, treatment delays, or
changes in treatment regimens; thereby affecting the potential curative effects of chemotherapy.
For some patients, CIPN symptoms can persist over time, contributing to lower quality of life.
Little is known about risk factors for CIPN. Chemotoxicity risk scores have been developed
and evaluated for use among elderly patients receiving chemotherapy. However, these tools
generally report moderate predictive accuracy (60%-70%), small sample sizes, and short-term
follow up. We are aware of no publicly available, validated risk models to assess risk of severe
and chronic CIPN among diverse patients at risk for this potentially disabling side effect.
The goal of this proposal is to identify patients at risk for CIPN and to understand how
patients and provider interpret and use CIPN risk information in clinical decision-making.
Focusing on more than 8,500 insured adults (18+) diagnosed with invasive, stage I-III breast
and II-IIIA colorectal cancers (2013-2021) who received adjuvant chemotherapy treatment with
known risk for CIPN, we will develop and validate predictive models to quantify the risk of
severe CIPN and incident chronic CIPN and assess how CIPN risk information might be used to
inform clinical decision-making about cancer treatment and survivorship care planning.
We hypothesize that CIPN risk is a high priority for patients in thinking about treatment
choice and survivorship care planning. In addition, we hypothesize that the relative importance
of CIPN risk for patient and provider decision-making will vary by patient characteristics (e.g.,
age, cancer stage). We anticipate that the risk of severe and chronic CIPN can be predicted
with a high degree of accuracy using electronic health records and machine learning methods.
The study team has significant and complementary expertise in health services research,
biostatistics and predictive modeling, oncology practice, cancer epidemiology,
pharmacotherapy, drug safety and the patient care experience. To our knowledge, this will be
one of the first studies to develop and validate a CIPN predictive model that can be used by
oncology teams to inform treatment and care planning decisions and improve patient-valued
outcomes. Translation and replication of the findings will be catalyzed through publication in
peer-reviewed journals and the development and distribution of free software to facilitate testing
and adaptation of the resulting risk models across diverse systems of care.
项目摘要/摘要
化学疗法诱导的周围神经病(CIPN)影响超过三分之二的成年人
接受精选辅助化学疗法的侵入性癌症(例如紫杉烷,铂类似物)。
严重的CIPN症状会导致化疗剂量减少,治疗延迟或
治疗方案的变化;从而影响化学疗法的潜在治愈作用。
对于某些患者而言,CIPN症状会随着时间的流逝而持续,从而导致生活质量降低。
关于CIPN的危险因素知之甚少。趋化风险评分已经开发
并评估接受化学疗法的老年患者使用。但是,这些工具
通常报告中等的预测准确性(60%-70%),小样本量和短期
跟进。我们知道没有公开可用的经过验证的风险模型来评估严重的风险
以及有可能致残的副作用的不同患者中的慢性CIPN。
该提案的目的是确定有CIPN风险的患者,并了解如何
患者和提供者在临床决策中解释和使用CIPN风险信息。
专注于8,500多名被诊断为侵入性,I-III期乳房的被诊断成人(18岁以上)
和II-IIIA结直肠癌(2013-2021),他们接受了辅助化疗治疗
CIPN的已知风险,我们将开发和验证预测模型,以量化
严重的CIPN和事件慢性CIPN,并评估如何使用CIPN风险信息
告知有关癌症治疗和生存护理计划的临床决策。
我们假设CIPN风险是患者考虑治疗的高度优先事项
选择和生存护理计划。此外,我们假设相对重要性
患者和提供者决策的CIPN风险会因患者特征而异(例如,
年龄,癌症阶段)。我们预计可以预测严重和慢性CIPN的风险
使用电子健康记录和机器学习方法具有高度的精度。
研究团队在卫生服务研究方面具有重要的互补专业知识,
生物统计学和预测建模,肿瘤学实践,癌症流行病学,
药物治疗,药物安全和患者护理经验。据我们所知,这将是
开发和验证CIPN预测模型的最早研究之一可以由
肿瘤学团队为治疗和护理计划的决策提供信息,并提高患者评价
结果。调查结果的翻译和复制将通过出版物催化
同行评审的期刊以及自由软件的开发和分发以促进测试
并适应各种护理系统中所得的风险模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alyce Sophia Adams其他文献
Alyce Sophia Adams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alyce Sophia Adams', 18)}}的其他基金
Leveraging machine learning to improve risk prediction for chemotherapy inducedneuropathy
利用机器学习改善化疗引起的神经病变的风险预测
- 批准号:
10665536 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
the Diabetes Research for Equity through Advanced Multilevel Science Center for Diabetes Translational Research (DREAMS-CDTR)
通过糖尿病转化研究高级多层次科学中心 (DREAMS-CDTR) 进行糖尿病公平研究
- 批准号:
10290745 - 财政年份:2011
- 资助金额:
$ 68.96万 - 项目类别:
DREAMS - Translational Research Core - Health Equity & Action Translational (HEAT)
梦想 - 转化研究核心 - 健康公平
- 批准号:
10476568 - 财政年份:2011
- 资助金额:
$ 68.96万 - 项目类别:
the Diabetes Research for Equity through Advanced Multilevel Science Center for Diabetes Translational Research (DREAMS-CDTR)
通过糖尿病转化研究高级多层次科学中心 (DREAMS-CDTR) 进行糖尿病公平研究
- 批准号:
10903488 - 财政年份:2011
- 资助金额:
$ 68.96万 - 项目类别:
DREAMS - Translational Research Core - Health Equity & Action Translational (HEAT)
梦想 - 转化研究核心 - 健康公平
- 批准号:
10290747 - 财政年份:2011
- 资助金额:
$ 68.96万 - 项目类别:
the Diabetes Research for Equity through Advanced Multilevel Science Center for Diabetes Translational Research (DREAMS-CDTR)
通过糖尿病转化研究高级多层次科学中心 (DREAMS-CDTR) 进行糖尿病公平研究
- 批准号:
10476565 - 财政年份:2011
- 资助金额:
$ 68.96万 - 项目类别:
相似国自然基金
新辅助化疗后CXCL12+CAF诱导胰腺癌三级淋巴结构表型特征与空间定位的分子机制研究
- 批准号:82373296
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
- 批准号:82360345
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
LncRNA SRA1/SPTBN1复合物调控UGT1A家族增加药物水溶性促进Her-2阳性乳腺癌新辅助化疗耐药
- 批准号:32360144
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
影像组学联合类器官探究膀胱癌分子分型与新辅助化疗疗效的关系及构建疗效预测模型
- 批准号:82302304
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多时序CT影像与病理WSI智能预测局部进展期胃癌新辅助化疗疗效的研究
- 批准号:82371952
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
- 批准号:
10743144 - 财政年份:2023
- 资助金额:
$ 68.96万 - 项目类别:
Using implantable microdevices for deep phenotyping of multiple drug responses in brain tumor patients
使用植入式微型设备对脑肿瘤患者的多种药物反应进行深度表型分析
- 批准号:
10732396 - 财政年份:2023
- 资助金额:
$ 68.96万 - 项目类别:
A Stem Cell Based Exosomal Vaccine for the Prevention of Cancer
用于预防癌症的基于干细胞的外泌体疫苗
- 批准号:
10577271 - 财政年份:2023
- 资助金额:
$ 68.96万 - 项目类别:
Interrogating Mechanisms of Anti-tumor Immunity in Human Subjects and Murine Models of IDH-Mutant Glioma Treated with All-Trans Retinoic Acid and PD-1 Inhibition
探讨全反式视黄酸和 PD-1 抑制治疗的人类受试者和 IDH 突变神经胶质瘤小鼠模型的抗肿瘤免疫机制
- 批准号:
10739154 - 财政年份:2023
- 资助金额:
$ 68.96万 - 项目类别:
Coffee and metabolites modulating the gut microbiome for improved colorectal cancer survival
咖啡和代谢物调节肠道微生物组以提高结直肠癌的生存率
- 批准号:
10409225 - 财政年份:2022
- 资助金额:
$ 68.96万 - 项目类别: