Mapping superior colliculus contributions to action selection and movement

绘制上丘对动作选择和运动的贡献

基本信息

  • 批准号:
    10349511
  • 负责人:
  • 金额:
    $ 11.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Optimal behavioral responses require decision-making and motor control. Deficits in action selection are associated with motor disorders, pathological behaviors, and cognitive dysfunction. A neural correlate of action selection has been observed in the sustained ramping of movement-selective neurons across multiple brain regions, suggesting a distributed neural mechanism. Though interactions between frontal cortex (FC) and basal ganglia (BG) are traditionally thought to mediate action selection, recent data suggests that subcortical motor structures like the superior colliculus (SC) can also bias upcoming behaviors. The SC is reciprocally connected with FC and BG via motor thalamus, forming a loop-like circuit. Yet, it remains unknown how SC influences activity in FC and BG, nor is clear how SC participates in action selection without evoking movement. The goal of this proposal is to map SC contributions to action selection and movement using a delayed-response sensorimotor discrimination task in mice. Based on previous literature and preliminary findings, it is hypothesized that the SC drives motor representations in FC and BG to bias decision-making. Spatially and temporally precise optogenetic perturbation will be combined with multi-electrode recording in behaving animals to evaluate a causal role of collicular activity across a multi-regional circuit. Transient perturbations in SC will be combined with high-density recordings in FC and BG. Next motor representations in SC will be mapped onto local excitatory and inhibitory neurons. Finally, divergent collicular output pathways will be dissected for their respective role in selection versus movement. My preliminary data reveal the segregation SC output neurons projecting to thalamus (implicated in action selection) versus brainstem (implicated in movement). Projection-specific tagging will reveal the electrophysiological properties of these separate populations during behavior. In addition, projection-specific manipulation will demonstrate their distinct roles in selection versus movement. Taken together, these experiments will shed light on the neural mechanisms of distributed action selection dynamics and map action representations in SC onto discrete cell-types and projections. In addition to implicating subcortical motor structures in cognitive control, these results will provide a foundation for circuit-based investigation into cognitive- and motor-related neurological disorders.
最佳的行为反应需要决策和运动控制。动作选择缺陷与运动障碍、病理行为和认知功能障碍有关。在多个大脑区域的运动选择性神经元的持续增强中观察到了动作选择的神经相关性,这表明了分布式神经机制。尽管传统上认为额叶皮层 (FC) 和基底神经节 (BG) 之间的相互作用可以调节动作选择,但最近的数据表明,上丘 (SC) 等皮层下运动结构也可以使即将发生的行为产生偏差。 SC通过运动丘脑与FC、BG相互连接,形成环状电路。然而,尚不清楚 SC 如何影响 FC 和 BG 的活动,也不清楚 SC 如何参与动作选择而不引起运动。该提案的目标是利用小鼠的延迟反应感觉运动辨别任务来绘制 SC 对动作选择和运动的贡献。根据之前的文献和初步研究结果,假设 SC 驱动 FC 和 BG 中的运动表征,从而使决策产生偏差。空间和时间上精确的光遗传学扰动将与行为动物的多电极记录相结合,以评估多区域回路中的丘脑活动的因果作用。 SC 中的瞬态扰动将与 FC 和 BG 中的高密度记录相结合。 SC 中的下一步运动表征将被映射到局部兴奋性和抑制性神经元上。最后,将剖析不同的丘脑输出路径,以确定它们在选择与运动中各自的作用。我的初步数据揭示了投射到丘脑(涉及动作选择)与脑干(涉及运动)的分离 SC 输出神经元。投影特异性标记将揭示这些不同群体在行为过程中的电生理特性。此外,特定于投影的操作将展示它们在选择与移动中的独特作用。总而言之,这些实验将揭示分布式动作选择动力学的神经机制,并将 SC 中的动作表征映射到离散的细胞类型和预测上。除了在认知控制中暗示皮层下运动结构之外,这些结果还将为基于回路的认知和运动相关神经系统疾病的研究提供基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alyse Marian Thomas其他文献

Alyse Marian Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alyse Marian Thomas', 18)}}的其他基金

Mapping superior colliculus contributions to action selection and movement
绘制上丘对动作选择和运动的贡献
  • 批准号:
    10573303
  • 财政年份:
    2021
  • 资助金额:
    $ 11.02万
  • 项目类别:

相似国自然基金

乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
  • 批准号:
    82301880
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
  • 批准号:
    82300031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
  • 批准号:
    72303209
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
  • 批准号:
    32360323
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
  • 批准号:
    32371226
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Quantitative Electrophysiology to Link Neuroplasticity, Brain State, and Behavioral Change in Human Visual Cortex
定量电生理学将神经可塑性、大脑状态和人类视觉皮层的行为变化联系起来
  • 批准号:
    10643593
  • 财政年份:
    2023
  • 资助金额:
    $ 11.02万
  • 项目类别:
The Function of Sleep in Critical Period Plasticity
睡眠在可塑性关键期的作用
  • 批准号:
    10590177
  • 财政年份:
    2023
  • 资助金额:
    $ 11.02万
  • 项目类别:
Concurrent high resolution calcium imaging and fMRI reveal intra anterior cingulate cortex neuronal activity and large-scale brain network connectivity in healthy and nicotine-addicted mice
并行高分辨率钙成像和功能磁共振成像揭示了健康和尼古丁成瘾小鼠的前扣带皮层神经元活动和大规模脑网络连接
  • 批准号:
    10576010
  • 财政年份:
    2023
  • 资助金额:
    $ 11.02万
  • 项目类别:
Molecular and neural mechanisms associated with injury and recovery from traumatic brain injury
与创伤性脑损伤的损伤和恢复相关的分子和神经机制
  • 批准号:
    10693653
  • 财政年份:
    2023
  • 资助金额:
    $ 11.02万
  • 项目类别:
Uncovering cell type-specific prefrontal neural mechanisms of visuospatial selective attention in freely behaving mice using a high-throughput touchscreen-based training system
使用基于高通量触摸屏的训练系统揭示自由行为小鼠视觉空间选择性注意的细胞类型特异性前额神经机制
  • 批准号:
    10652656
  • 财政年份:
    2022
  • 资助金额:
    $ 11.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了