Deep learning to quantify glaucomatous damage on fundus photographs for teleophthalmology
深度学习量化眼底照片上的青光眼损伤,用于远程眼科
基本信息
- 批准号:10348705
- 负责人:
- 金额:$ 19.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-02 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAdvisory CommitteesAgreementAlgorithmsAssisted Living FacilitiesBiomedical EngineeringBiometryBlindnessClinicClinicalClinical ResearchConsumptionDataDependenceDetectionDevelopmentDiabetic RetinopathyDiagnosisDiscriminationDiseaseEarly DiagnosisEffectivenessEnvironmentEpidemiologyEvaluationEyeEye diseasesFellowshipFrequenciesFundusFundus photographyGlaucomaGoalsGoldGrantHumanImageImaging technologyImprove AccessIndividualLabelMachine LearningManualsMasksMaster&aposs DegreeMeasurementMedicalMedicineMentored Patient-Oriented Research Career Development AwardMentorsMentorshipNatureOptic DiskOptical Coherence TomographyOutputPatientsPerimetryPrimary Health CarePublic HealthReference StandardsReproducibilityResearchResearch PriorityResearch ProposalsResource-limited settingResourcesScientistScreening procedureSensitivity and SpecificitySeverity of illnessSpecialistSuspect GlaucomasTechnologyTestingThickTimeTrainingValidationVisual FieldsVisual impairmentWidthWorkalgorithm trainingartificial intelligence algorithmcareercarinacohortcostcost effectivedeep learningdeep learning algorithmdeep neural networkdemographicsdiagnostic toolexperienceeye centerhealth care disparityhigh riskimprovedinnovationinterestlearning networkneural networknovelnovel diagnosticspopulation basedprogramsprospectivepublic health interventionresponsible research conductretinal nerve fiber layerscreeningteleophthalmologytool
项目摘要
PROJECT SUMMARY/ABSTRACT
Candidate: Atalie Carina Thompson, MD, MPH is a current glaucoma fellow and Heed fellow with a long-term
career goal of becoming an independent clinician-scientist and leader in the field of glaucoma and public health.
She has a long-standing interest in addressing healthcare disparities in medicine, and in improving the diagnosis
of glaucoma and other ophthalmic diseases through imaging technology. While obtaining a medical degree at
Stanford, she received a fellowship to complete a master’s degree in public health with additional higher-level
coursework in biostatistics and epidemiology. Her immediate goal in this proposal is to refine and validate a deep
learning (DL) algorithm capable of quantifying neuroretinal damage on optic disc photographs and then to apply
it in a pilot teleophthalmology program. With a K23 Mentored Patient-Oriented Research Career Development
Award, she will acquire additional didactic training and mentored research experience in glaucoma imaging,
machine learning, biostatistics, clinical research, and the responsible conduct of research. Environment: The
mentorship and expertise of the advisory committee, the extensive resources at the Duke Eye Center and
Departments of Biostatistics and Biomedical Engineering, and the significant institutional commitment will
provide her with the support needed to transition successfully into an independent clinician-scientist. Research:
This proposal will test the hypothesis that a DL algorithm trained with SDOCT detects glaucoma on optic disc
photographs with greater accuracy than human graders. In Specific Aim 1, a DL algorithm that quantifies
neuroretinal damage on optic disc photographs will be refined. The main hypothesis is that the quantitative output
provided by the DL algorithm will allow accurate discrimination of eyes at different stages of the disease
according to standard automated perimetry, and will generate cut-offs suitable for use in a screening setting. In
Specific Aim 2, the short-term repeatability and reproducibility of the DL algorithm in optic disc photographs
acquired over a time period of several weeks will be determined. The hypothesis is that the test-retest variability
of the predictions from the DL algorithm will be similar to the original measurements acquired by SDOCT. In
Specific Aim 3, the DL algorithm will be applied to optic disc photographs obtained during a pilot screening
teleophthalmology program in primary care clinics and assisted living facilities. The hypothesis is that the DL
algorithm will be more accurate than human graders when a full ophthalmic examination is used as the gold
standard. This work will constitute the basis of an R01 grant and will advance our understanding of the application
of deep learning algorithms in glaucoma and teleophthalmology.
项目概要/摘要
候选人: Atalie Carina Thompson,医学博士、公共卫生硕士,现任青光眼研究员和 Heed 研究员,长期从事青光眼研究
职业目标是成为一名独立的临床科学家和青光眼和公共卫生领域的领导者。
她长期以来对解决医学领域的医疗保健差异和改善诊断有着浓厚的兴趣
通过成像技术治疗青光眼和其他眼科疾病,同时获得医学学位。
斯坦福大学,她获得了奖学金,以完成公共卫生硕士学位和其他更高级别的学位
她在该提案中的直接目标是完善和验证深入的生物统计学和流行病学课程。
学习(DL)算法能够量化视盘照片上的神经视网膜损伤,然后应用
通过 K23 指导的以患者为导向的研究职业发展。
获奖后,她将获得青光眼成像方面的额外教学培训和指导研究经验,
机器学习、生物统计学、临床研究和负责任的研究行为:环境。
咨询委员会的指导和专业知识、杜克眼科中心的广泛资源以及
生物统计学和生物医学工程系以及重大的机构承诺将
为她提供成功转型为独立临床科学家研究所需的支持:
该提案将测试以下假设:使用 SDOCT 训练的深度学习算法可检测视神经盘上的青光眼
在特定目标 1 中,深度学习算法能够比人类评分者更准确地进行量化。
视盘照片上的神经视网膜损伤将被细化,主要假设是定量输出。
DL算法提供的功能将能够准确区分眼睛在疾病的不同阶段
根据标准自动视野检查,并将生成适合在筛查环境中使用的截止值。
具体目标 2,DL 算法在视盘照片中的短期重复性和再现性
将确定几周时间段内获得的数据。假设是重测变异性。
DL 算法的预测结果将与 SDOCT 获取的原始测量结果相似。
具体目标 3,深度学习算法将应用于试点筛选过程中获得的视盘照片
初级保健诊所和辅助生活设施中的远程眼科项目的假设是 DL。
当使用全面的眼科检查作为黄金时,算法将比人类评分者更准确
这项工作将构成 R01 资助的基础,并将增进我们对申请的理解。
青光眼和远程眼科深度学习算法的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atalie C Thompson其他文献
Atalie C Thompson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atalie C Thompson', 18)}}的其他基金
Deep learning to quantify glaucomatous damage on fundus photographs for teleophthalmology
深度学习量化眼底照片上的青光眼损伤,用于远程眼科
- 批准号:
10600984 - 财政年份:2021
- 资助金额:
$ 19.48万 - 项目类别:
Deep learning to quantify glaucomatous damage on fundus photographs for teleophthalmology
深度学习量化眼底照片上的青光眼损伤,用于远程眼科
- 批准号:
10415277 - 财政年份:2021
- 资助金额:
$ 19.48万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 19.48万 - 项目类别:
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 19.48万 - 项目类别:
Mentoring the next generation of trainees in patient-oriented, community engaged research in obesity and health equity
指导下一代学员进行以患者为中心、社区参与的肥胖和健康公平研究
- 批准号:
10662072 - 财政年份:2023
- 资助金额:
$ 19.48万 - 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
$ 19.48万 - 项目类别:
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 19.48万 - 项目类别: