Regulation of NMDAR-Mediated Synaptic Signaling
NMDAR 介导的突触信号传导的调节
基本信息
- 批准号:10346564
- 负责人:
- 金额:$ 52.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:Active Biological TransportAddressAmino AcidsBehaviorBindingBiological ModelsCaenorhabditis elegansCell modelChimera organismClinicalCrystallizationDataDevelopmentDiseaseDrosophila genusExhibitsFoundationsGenesGeneticGenetic ScreeningGenetic TechniquesGlutamate ReceptorGlutamatesGoalsHomologous GeneInvertebratesKineticsLearningLong-Term PotentiationMapsMediatingMemoryMental DepressionMental HealthMental disordersModalityModelingMolecularMolecular MotorsMutationN-MethylaspartateNervous system structureNeurodegenerative DisordersNeuronsNeurophysiology - biologic functionNeurotransmittersProcessProteinsRecombinantsRegulationResearchResolutionRoleScaffolding ProteinSchizophreniaSignal TransductionSiteStructureSynapsesSynaptic plasticityTestingTransgenic OrganismsWorkbasechemical geneticsexperimental studyin vivoinsightnervous system disorderneural circuitnew therapeutic targetnovelnovel therapeuticsoptogeneticsoverexpressionpostsynapticpresynapticprotein protein interactionreceptorrelating to nervous systemsynaptic function
项目摘要
PROJECT SUMMARY/ABSTRACT
We propose to study the NMDA-subtype (NMDARs) of ionotropic glutamate receptors (iGluRs) and their
regulation by NRAP-1, the first identified NMDAR-specific auxiliary protein, which we recently discovered in a
genetic screen for modifiers of NMDAR-mediated behavior in C. elegans. NMDARs are evolutionarily
conserved and well known for their role in synaptic plasticity, i.e., long-term potentiation (LTP); their importance
for cellular models of learning and memory; and their direct or indirect involvement in many neurological and
psychiatric disorders. Although NRAP-1 modifies the function of postsynaptic NMDARs, we showed that it was
released by presynaptic glutamatergic neurons. This discovery provided a major conceptual advance in our
understanding of the regulation of NMDAR-mediated synaptic signaling, with implications for both the control of
synaptic strength and for certain clinical disorders involving NMDARs. In preliminary experiments, we
successfully obtained crystals of recombinantly produced NRAP-1 and determined the crystal structure at 1.9
Å resolution. Elucidating the structure of NRAP-1 has provided important new insight into how NRAP-1
modifies NMDAR function. By studying vertebrate and C. elegans NMDARs, we have also demonstrated a
fundamental importance for the NMDAR amino-terminal domain (ATD) with respect to both receptor gating and
to the mechanism of action of NRAP-1. We now plan to build on this foundational work and ask how NRAP-1
functions to modulate NMDAR function, i.e., what are the interactions between NRAP-1 and NMDARs, and
how do these interactions change receptor kinetics? In contrast to overexpression of NMDARs, we discovered
that overexpression of NRAP-1 in vivo significantly increased NMDAR-mediated currents and behavior. This
has important implications for the control of synaptic plasticity. Furthermore, we found that NRAP-1 is actively
transported along neural processes. Together, these findings suggest that modulating NRAP-1 secretion might
be a mechanism used to regulate activity dependent changes in synaptic strength. Therefore, we will address
the molecular requirements for the transport and secretion of NRAP-1. The relevance of our proposed studies
is high because disorders of NMDAR-mediated signaling are implicated in synaptopathies associated with
neurodegenerative disorders as well as for mental health illnesses such as schizophrenia and depression.
Synaptic molecules are evolutionarily conserved, and our understanding of the mechanisms that regulate
synaptic signaling has greatly benefited from genetics-based studies in invertebrates such as Drosophila and
C. elegans. Notably, NMDARs and NRAP-1-like proteins appear to have co-evolved suggesting that vertebrate
NMDARs are likely regulated by auxiliary proteins. We therefore anticipate that our planned studies will help
provide a framework for a new mechanistic understanding of NMDARs centered on protein-protein
interactions.
项目概要/摘要
我们建议研究离子型谷氨酸受体 (iGluR) 的 NMDA 亚型 (NMDAR) 及其作用
NRAP-1 是第一个确定的 NMDAR 特异性辅助蛋白,我们最近在
线虫中 NMDAR 介导的行为修饰因子的遗传筛选是进化的。
因其在突触可塑性中的作用(即长时程增强(LTP))而保守且众所周知;
用于学习和记忆的细胞模型;以及它们直接或间接参与许多神经系统和
尽管 NRAP-1 改变了突触后 NMDAR 的功能,但我们证明它是
由突触前谷氨酸能神经元释放的这一发现为我们提供了重大的概念进展。
了解 NMDAR 介导的突触信号传导的调节,对控制
在初步实验中,我们对突触强度和涉及 NMDAR 的某些临床疾病进行了研究。
成功获得重组生产的NRAP-1晶体,并确定晶体结构1.9
阐明 NRAP-1 的结构为了解 NRAP-1 的作用提供了重要的新见解。
通过研究脊椎动物和线虫 NMDAR,我们还证明了
NMDAR 氨基末端结构域 (ATD) 对于受体门控和
我们现在计划在这项基础工作的基础上进一步了解 NRAP-1 的作用机制。
调节 NMDAR 功能的功能,即 NRAP-1 和 NMDAR 之间的相互作用是什么,以及
与 NMDAR 的过度表达相反,我们发现这些相互作用如何改变受体动力学?
体内过度表达 NRAP-1 显着增加 NMDAR 介导的电流和行为。
此外,我们发现 NRAP-1 对突触可塑性的控制具有重要意义。
总之,这些发现表明调节 NRAP-1 的分泌可能。
是一种用于调节突触强度活动依赖性变化的机制。
NRAP-1 运输和分泌的分子要求 我们提出的研究的相关性。
之所以高,是因为 NMDAR 介导的信号传导紊乱与以下疾病相关的突触病有关
神经退行性疾病以及精神分裂症和抑郁症等精神健康疾病。
突触分子在进化上是保守的,我们对调节机制的理解
突触信号传导极大地受益于无脊椎动物(如果蝇和
值得注意的是,NMDAR 和 NRAP-1 样蛋白似乎是共同进化的,这表明脊椎动物
NMDAR 可能受到辅助蛋白的调节,因此我们预计我们计划的研究将有所帮助。
为以蛋白质-蛋白质为中心的 NMDAR 新机制理解提供框架
互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andres Villu Maricq其他文献
Andres Villu Maricq的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andres Villu Maricq', 18)}}的其他基金
Peptidergic Modulation of NMDA-Receptor Mediated Neurotransmission
NMDA 受体介导的神经传递的肽能调节
- 批准号:
10280822 - 财政年份:2021
- 资助金额:
$ 52.85万 - 项目类别:
Regulation of NMDAR-Mediated Synaptic Signaling
NMDAR 介导的突触信号传导的调节
- 批准号:
10533340 - 财政年份:2021
- 资助金额:
$ 52.85万 - 项目类别:
Peptidergic Modulation of NMDA-Receptor Mediated Neurotransmission
NMDA 受体介导的神经传递的肽能调节
- 批准号:
10622524 - 财政年份:2021
- 资助金额:
$ 52.85万 - 项目类别:
Peptidergic Modulation of NMDA-Receptor Mediated Neurotransmission
NMDA 受体介导的神经传递的肽能调节
- 批准号:
10443850 - 财政年份:2021
- 资助金额:
$ 52.85万 - 项目类别:
Mechanistic studies of synaptopathies associated with Alzheimer's risk factors
与阿尔茨海默病危险因素相关的突触病的机制研究
- 批准号:
9980770 - 财政年份:2019
- 资助金额:
$ 52.85万 - 项目类别:
Mechanistic studies of synaptopathies associated with Alzheimer's risk factors
与阿尔茨海默病危险因素相关的突触病的机制研究
- 批准号:
9808919 - 财政年份:2019
- 资助金额:
$ 52.85万 - 项目类别:
2015 Modulation of Neural Circuits & Behavior Gordon Research Conference
2015 神经回路的调制
- 批准号:
8909848 - 财政年份:2015
- 资助金额:
$ 52.85万 - 项目类别:
Glutamate-Mediated Neurotransmission and the Control of Behavior
谷氨酸介导的神经传递和行为控制
- 批准号:
9009657 - 财政年份:2015
- 资助金额:
$ 52.85万 - 项目类别:
Glutamate-Mediated Neurotransmission and the Control of Behavior
谷氨酸介导的神经传递和行为控制
- 批准号:
9128053 - 财政年份:2015
- 资助金额:
$ 52.85万 - 项目类别:
Glutamate-Mediated Neurotransmission and the Control of Behavior
谷氨酸介导的神经传递和行为控制
- 批准号:
9754884 - 财政年份:2015
- 资助金额:
$ 52.85万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Elucidating the Mechanistic Basis for Phagotrophy in the Protozoan Trypansoma cruzi
阐明原生动物克氏锥虫吞噬作用的机制基础
- 批准号:
10345248 - 财政年份:2022
- 资助金额:
$ 52.85万 - 项目类别:
Delineating a role for CA in HIV-1 nuclear transport to sites of integration
描述 CA 在 HIV-1 核转运至整合位点中的作用
- 批准号:
10342316 - 财政年份:2021
- 资助金额:
$ 52.85万 - 项目类别:
The Role of Secondary Interactions Relevant to Biological Reductions of Small Molecules
与小分子生物还原相关的次级相互作用的作用
- 批准号:
10246256 - 财政年份:2020
- 资助金额:
$ 52.85万 - 项目类别:
The Role of Secondary Interactions Relevant to Biological Reductions of Small Molecules
与小分子生物还原相关的次级相互作用的作用
- 批准号:
10670988 - 财政年份:2020
- 资助金额:
$ 52.85万 - 项目类别: