Structure-guided and high-throughput engineering of genetically encoded sensors for reactive oxygen species
活性氧基因编码传感器的结构引导和高通量工程
基本信息
- 批准号:10337219
- 负责人:
- 金额:$ 40.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAlzheimer&aposs DiseaseAmyloid beta-ProteinBiophysicsCardiac MyocytesCardiomyopathiesCardiovascular DiseasesCell physiologyCellsCellular Metabolic ProcessChronicColorCouplingDNA DamageDetectionDirected Molecular EvolutionDiseaseDisease ProgressionDisease modelDrug ScreeningDyesEngineeringEnvironmentFailureFeedbackFluorescent ProbesFunctional disorderFutureGene ExpressionGeneticGenetic EngineeringGoalsGreen Fluorescent ProteinsHumanHydrogen PeroxideHypoxiaImpairmentIndividualInterventionIschemiaKineticsLibrariesLinkLipidsLocationMeasurementMeasuresMethodsMicroscopyMitochondriaModelingMonitorMutationNerve DegenerationNeuronsOrganOxidative StressOxygenPathologicPatientsPerformancePharmacologyPhenotypePhysiologic MonitoringPhysiologicalPhysiological ProcessesPreparationProblem SolvingProcessProtein EngineeringProteinsRandomizedReactive Oxygen SpeciesReperfusion InjuryReperfusion TherapyRepressionResearch PersonnelResolutionRhodamineRoleSignal TransductionSiteSpecificitySpeedStressStructureTechnologyTertiary Protein StructureTestingTimeVariantbasebiophysical propertiescell typecellular targetingdesigndetection sensitivitydisease phenotypehigh throughput screeningimprovedin vivoinduced pluripotent stem cellinnovationnovelnovel therapeutic interventionpolydimethylsiloxaneprotein expressionpublic health relevancereceptorred fluorescent proteinrelating to nervous systemresponserestraintscreeningsensorstem cell modelstem cellsstressorsubcellular targetingtool
项目摘要
Modified Project Summary/Abstract Section
Elevated levels of reactive oxygen species (ROS) are strongly linked to severe pathological conditions causing cardiomyopathies and neurodegeneration. Today we can utilize fluorescent probes to detect dynamic changes in ROS levels in cell physiology and pathophysiology. However, the capabilities of many ROS sensors are currently still limited by small signal amplitudes, slow kinetics, low sensitivity, in vivo incompatibility, and restraints in cellular and subcellular targeting. Thus, monitoring ROS of oxidative stress in real-time is still very restricted.
Our central goal in this proposal is to resolve current limitations in ROS protein sensors. We will combine structured-guided protein design and high-throughput screening of large variant libraries in an innovative approach to engineer novel ROS sensors. We expect that significantly increasing signal amplitudes, ROS sensitivity, and insensitivity to hypoxic conditions will enable us to monitor oxidative stress in a wide range of disease models. Furthermore, we will validate new sensors in stem-cell derived models for neurodegeneration and cardiomyopathies with subcellular precision. Our objective is to further maximize ROS sensor function for advanced monitoring of oxidative stress in disease models in response to acute and chronic stressors. In the first aim, we will broaden the color spectrum of this class of sensors by fusing green, yellow, and red fluorescent proteins to a ROS sensitive protein domain . Furthermore, we will create sensors that are more photostable and insensitive to varying oxygen levels compared to fluorescent proteins. In the second aim, we will use a novel engineering platform for fluorescent sensors that allows us to screen large libraries of randomized variants. The fast, iterative process has the potential to significantly accelerate the optimization of sensor frameworks established in Aim 1. In the third aim, we will validate our sensors in several realistic use scenarios to receive immediate feedback for further refinement of sensor function. This includes the monitoring of oxidative stress as an indicator for Alzheimer’s disease, ischemia and reperfusion in stem-cell-derived neurons and cardiomyocytes. This proposal is significant because oxidative stress is common and can affect every organ and cell type resulting in a large number of severe diseases. Recent progress in fluorescent microscopy allows us to utilize specific probes to monitoring physiological processes with increasing precision. The engineering of improved ROS sensors will significantly expand the utility of those methods for the analysis of cell signaling and disease progression. Our project is innovative because the proposed approach will provide the fastest throughput for the design of highly efficient ROS sensor proteins. Furthermore, the improved sensors will be able to causally link disease phenotypes to acute and chronic stressors of oxidative stress with significantly increased temporal and spatial resolution.
修改的项目摘要/摘要部分
活性氧(ROS)的水平升高与导致心肌病和神经变性的严重病理状况密切相关。今天,我们可以利用荧光问题来检测细胞生理和病理生理学中ROS水平的动态变化。但是,许多ROS传感器的功能目前受到小信号放大器的限制,缓慢的动力学,低灵敏度,体内不相容性以及细胞和亚细胞靶向的约束。那是实时监测氧化应激的ROS仍然非常限制。
我们在此提案中的核心目标是解决ROS蛋白传感器中的当前局限性。我们将结合结构化引导的蛋白质设计和对大型变体库的高通量筛选,以一种创新的方法来设计新颖的ROS传感器。我们期望明显增加信号放大器,ROS敏感性和对低氧条件的不敏感性,这将使我们能够在广泛的疾病模型中监测氧化应激。此外,我们将验证具有亚细胞精度的神经变性和心肌病的干细胞衍生模型中的新传感器。我们的目标是进一步最大化ROS传感器功能,以响应急性和慢性应激,以高级监测疾病模型中氧化应激的监测。在第一个目标中,我们将通过将绿色,黄色和红色荧光蛋白融合到ROS敏感蛋白结构域来扩展此类传感器的色谱。此外,与荧光蛋白相比,我们将创建对氧气水平变化的传感器。在第二个目标中,我们将使用一个新颖的工程平台来用于荧光传感器,使我们能够筛选大型随机变体库。快速的迭代过程有可能显着加速AIM 1中建立的传感器框架的优化。在第三个目标中,我们将在几种现实的使用场景中验证传感器,以接收即时反馈,以进一步完善传感器功能。这包括监测氧化应激,作为阿尔茨海默氏病,缺血和再灌注的指标,在干细胞衍生的神经元和心肌细胞中。该建议很重要,因为氧化应激很常见,并且会影响大量严重疾病的每种器官和细胞类型。荧光显微镜的最新进展使我们能够利用特定的问题来监测精度。改进的ROS传感器的工程将显着扩大这些方法的效用,以分析细胞信号传导和疾病进展。我们的项目具有创新性,因为所提出的方法将为高效ROS传感器蛋白的设计提供最快的吞吐量。此外,改进的传感器将能够偶尔将疾病表型与氧化应激的急性和慢性应激联系起来,并显着增加临时和空间分辨率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andre Berndt其他文献
Andre Berndt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andre Berndt', 18)}}的其他基金
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别:
High-throughput engineering of ligand-selective fluorescent biosensors for detecting endogenous and exogenous opioids
用于检测内源性和外源性阿片类药物的配体选择性荧光生物传感器的高通量工程
- 批准号:
10635413 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别:
Structure-guided and high-throughput engineering of genetically encoded sensors for reactive oxygen species
活性氧基因编码传感器的结构引导和高通量工程
- 批准号:
10092345 - 财政年份:2021
- 资助金额:
$ 40.22万 - 项目类别:
In vivo real-time monitoring of reactive oxygen species and opioid signaling in a model for opioid receptor activity.
阿片受体活性模型中活性氧和阿片信号传导的体内实时监测。
- 批准号:
10369709 - 财政年份:2021
- 资助金额:
$ 40.22万 - 项目类别:
Structure-guided and high-throughput engineering of genetically encoded sensors for reactive oxygen species
活性氧基因编码传感器的结构引导和高通量工程
- 批准号:
10797426 - 财政年份:2021
- 资助金额:
$ 40.22万 - 项目类别:
Structure-guided and high-throughput engineering of genetically encoded sensors for reactive oxygen species
活性氧基因编码传感器的结构引导和高通量工程
- 批准号:
10551906 - 财政年份:2021
- 资助金额:
$ 40.22万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The Role of Dopamine in Cognitive Resilience to Alzheimer's Disease Pathology in Healthy Older Adults
多巴胺在健康老年人阿尔茨海默氏病病理认知弹性中的作用
- 批准号:
10678125 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别:
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
- 批准号:
10670573 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别:
Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
- 批准号:
10603708 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别: