The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis

离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用

基本信息

  • 批准号:
    10338164
  • 负责人:
  • 金额:
    $ 48.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-02 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

The inability to clinically treat tumor metastasis is responsible for the majority of cancer patient deaths. Cell migration is a pivotal step in the metastatic dissemination of cancer cells from a primary tumor to distant organs in the body. Cell motility is governed by cell-matrix interactions, the actomyosin cytoskeleton, and cell volume regulation via the involvement of ion transporters, such as the Na+/H+ exchanger 1 (NHE1), as explained by the Osmotic Engine Model (OEM). The roles of cytoskeleton and ion transporters in cell locomotion have been typically studied in isolation. The overarching goal of this project is to employ a multidisciplinary approach involving state-of-the-art bioengineering and imaging tools, quantitative analysis and in vivo models to define the relative roles and potential crosstalk between ion transporters and the cytoskeleton in breast cancer cell migration and metastasis in vivo. This application will test the hypothesis, supported by intriguing preliminary data, that the coordinated action of local isosmotic swelling at the leading edge and shrinkage at the trailing edge mediated by NHE1 and SWELL1, respectively, supports migration in confinement. We further hypothesize that NHE1 and SWELL1 act in concert with cell cytoskeleton to mediate efficient migration and metastasis. Given the lack of targeted therapies for triple negative breast cancer (TNBC), we will prioritize TNBC cell lines and patient- derived xenograft (PDX) tumor cells as models. In Aim 1, we will establish the functional roles of NHE1 and SWELL1 in cell migration inside confining µ-channels of different stiffnesses, in 3D gels and in cell dissemination from 3D breast cancer cell organoids. We will also elucidate the mechanism responsible for the polarized distribution of NHE1 and SWELL1 at the cell front and rear, respectively, and use novel optogenetic tools to alter their spatial polarization and test how these alterations affect the direction and efficiency of cell migration. In parallel, we will develop an innovative mathematical model to identify the key variables that enable OEM- mediated cell motility. In Aim 2, we will delineate the interplay between OEM and the various cytoskeletal constituents, including b1 integrins, myosin II, actin and microtubules. Importantly, we will define the intracellular transport mechanisms responsible for NHE1 and SWELL1 shuttling along the longitudinal cell surface. We will also introduce a comprehensive mathematical model to decipher the crosstalk of OEM and cytoskeletal components in regulating migration efficiency. In Aim 3, we will demonstrate the effects of NHE1 and SWELL1 silencing on cell migration in natural mammary tissue tracks in vivo and examine their roles in breast cancer growth and metastasis, using TNBC cell lines and PDXs orthotopically transplanted to the 4th mammary fat pad of mice. We will complement mouse studies with experiments in zebrafish, which enables us to image its entire vasculature at exceptional optical clarity, in order to delineate the roles of ion transporters in different steps of the metastatic cascade. This application brings together a team of investigators with expertise in bioengineering, imaging, cell & molecular biology, quantitative analysis, PDXs, in vivo studies and breast cancer biology.
无法临床治疗肿瘤转移是癌症患者的大多数 死亡人数。细胞迁移是癌细胞从原发性肿瘤转移到转移性的关键步骤 体内遥远的器官。细胞运动性受细胞玛尔体相互作用,肌动蛋白细胞骨架和 通过离子转运蛋白(例如Na+/H+交换器1(NHE1))的参与来调节细胞体积 由渗透引擎模型(OEM)解释。细胞骨架和离子转运蛋白在细胞运动中的作用 通常是孤立研究的。该项目的总体目标是采用多学科 涉及最先进的生物工程和成像工具,定量分析以及体内模型的方法 定义离子转运蛋白和乳腺癌细胞骨架之间的相对作用和潜在的串扰 细胞迁移和体内转移。该应用程序将检验该假设,并通过引人入胜的初步支持 数据,局部同质肿胀在前沿的协调作用,在后缘收缩 由NHE1和Swell1介导,分别支持完成迁移。我们进一步假设 NHE1和SWELL1与细胞骨骼协同作用,以介导有效的迁移和转移。鉴于 缺乏针对三重阴性乳腺癌(TNBC)的靶向疗法,我们将优先考虑TNBC细胞系和患者 - 衍生的异种移植(PDX)肿瘤细胞作为模型。在AIM 1中,我们将确定NHE1和 在限制不同刚度,3D凝胶和细胞传播中的细胞迁移中的swell1迁移。 来自3D乳腺癌细胞器官。我们还将阐明负责极化的机制 NHE1和Swell1在细胞前后分别分布,并使用新型的光遗传学工具来改变 它们的空间极化并测试这些改变如何影响细胞迁移的方向和效率。在 并行,我们将开发一个创新的数学模型,以确定使OEM-的关键变量 介导的细胞运动。在AIM 2中,我们将描述OEM与各种细胞骨架之间的相互作用 包括B1整联蛋白,肌球蛋白II,肌动蛋白和微管包括的组成量。重要的是,我们将定义细胞内 负责NHE1和Swell1沿纵向细胞表面穿梭的运输机制。我们将 还引入了一个全面的数学模型,以解读OEM和细胞骨架的串扰 控制迁移效率的组成部分。在AIM 3中,我们将演示NHE1和Swell1的影响 在体内沉默的天然乳腺组织轨迹中的细胞迁移并检查其在乳腺癌中的作用 生长和转移,使用TNBC细胞系和原位移植到第四乳腺脂肪垫的PDXS 小鼠。我们将通过斑马鱼中的实验补充小鼠研究,这使我们能够图像整个图像 在特殊光学清晰度下的脉管系统,以在不同的步骤中描述离子转运蛋白的作用 转移性级联。该应用程序汇集了一组研究人员,具有生物工程专业知识, 成像,细胞和分子生物学,定量分析,PDX,体内研究和乳腺癌生物学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantinos Konstantopoulos其他文献

Konstantinos Konstantopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantinos Konstantopoulos', 18)}}的其他基金

Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
  • 批准号:
    10358051
  • 财政年份:
    2022
  • 资助金额:
    $ 48.73万
  • 项目类别:
Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
  • 批准号:
    10571938
  • 财政年份:
    2022
  • 资助金额:
    $ 48.73万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10759092
  • 财政年份:
    2021
  • 资助金额:
    $ 48.73万
  • 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
  • 批准号:
    10582153
  • 财政年份:
    2021
  • 资助金额:
    $ 48.73万
  • 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
  • 批准号:
    10374917
  • 财政年份:
    2021
  • 资助金额:
    $ 48.73万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10381200
  • 财政年份:
    2021
  • 资助金额:
    $ 48.73万
  • 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
  • 批准号:
    10379292
  • 财政年份:
    2021
  • 资助金额:
    $ 48.73万
  • 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
  • 批准号:
    10622450
  • 财政年份:
    2021
  • 资助金额:
    $ 48.73万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10524192
  • 财政年份:
    2021
  • 资助金额:
    $ 48.73万
  • 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
  • 批准号:
    10559575
  • 财政年份:
    2021
  • 资助金额:
    $ 48.73万
  • 项目类别:

相似海外基金

Chemoattractant-specific T cell navigation of complex environments
复杂环境中化学引诱剂特异性 T 细胞导航
  • 批准号:
    10741224
  • 财政年份:
    2023
  • 资助金额:
    $ 48.73万
  • 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
  • 批准号:
    10586534
  • 财政年份:
    2023
  • 资助金额:
    $ 48.73万
  • 项目类别:
Rac1 and the actin cytoskeleton in renal tubular repair
Rac1 和肌动蛋白细胞骨架在肾小管修复中的作用
  • 批准号:
    10739610
  • 财政年份:
    2023
  • 资助金额:
    $ 48.73万
  • 项目类别:
Molecular Determinants of Kidney Podocyte Architecture in Health, Injury, and Recovery
健康、损伤和恢复中肾足细胞结构的分子决定因素
  • 批准号:
    10659239
  • 财政年份:
    2022
  • 资助金额:
    $ 48.73万
  • 项目类别:
Regulation of dynamic actin networks during epithelial morphogenesis
上皮形态发生过程中动态肌动蛋白网络的调节
  • 批准号:
    10797655
  • 财政年份:
    2022
  • 资助金额:
    $ 48.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了