IgSF11 Signaling Controls Osteoclast Maturation and Pathogenic Bone Loss
IgSF11 信号传导控制破骨细胞成熟和致病性骨质流失
基本信息
- 批准号:10337682
- 负责人:
- 金额:$ 35.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectBiologicalBiological AssayCell Surface ReceptorsCellsColitisComplexCoupledDataDiseaseEnzymesFutureGenetic TranscriptionGlycolysisHomeostasisHumanImmunoglobulinsInflammationInflammatoryJAK2 geneLinkMass Spectrum AnalysisMediatingMetabolicMetabolismMindModelingModificationMolecularMusMyelogenousNatureOsteoblastsOsteoclastsOsteogenesisPathogenicityPathway interactionsPatientsPhenotypePhosphorylationPhosphotransferasesPolyubiquitinationProcessProteinsPyruvate KinaseRegulationRoleSRC geneScaffolding ProteinSignal PathwaySignal TransductionTRAF6 geneTestingTherapeuticValidationbasebonebone lossbone resorbing activitybone strengthclinically relevantdextran sulfate sodium induced colitisexperimental studyinflammatory bone lossinhibitormembermutantnovelpreventsmall moleculesrc-Family Kinases
项目摘要
Under inflammatory conditions, bone destruction can be linked to excessive activity of bone-resorbing
osteoclasts (OCs), which results not only from the differentiation of too many OCs, but also from over-
maturation of OCs. While most current bone loss treatments prevent bone loss by reducing OC numbers, it
may be better if future therapeutic strategies focus on targeting OC maturation rather than early OC
differentiation to avoid inhibiting coupled bone formation that depends on interactions between bone-forming
osteoblasts and OCs. In an effort to target maturation, we previously identified immunoglobulin superfamily
member 11 (IgSF11) as a novel cell surface receptor that regulates OC differentiation but not new bone
formation. To characterize IgSF11 signaling, we analyzed, by mass spectrometry, proteins phosphorylated
after IgSF11 activation and identified Pyruvate kinase M2 (PKM2), the enzyme that catalyzes the last step of
glycolysis, as a downstream target. This finding highlights a potentially greater than previously known
determinative role for metabolic regulation during OC differentiation and inflammatory bone loss. We therefore
propose the following specific aims: 1. Examine the role of IgSF11-PKM2 signaling in inflammatory bone loss.
We will investigate OC-expressed IgSF11 in the context of inflammatory bone loss by using an LPS-induced
model of bone loss. To test the contribution of PKM2-dependent effects, we will treat LPS-induced IgSF11-/-
mice with small molecule modulators (TEPP-46, shikonin) of PKM2. Our preliminary data suggests that TEPP-
46 activation of PKM2 reduces DSS-induced bone loss. To examine whether IgSF11 expression affects colitis-
associated bone loss, we will perform DSS-induced colitis experiments using IgSF11-deficient mice. We will
also perform DSS-induced colitis experiments using IgSF11-/- mice treated with TEPP-46 or shikonin. These
studies will be critical to establishing the intersection of IgSF11 and PKM2 contributions to clinically relevant
inflammatory bone loss. 2. Characterization of IgSF11-PKM2 signaling mechanisms in osteoclast
differentiation. We have formulated a four-step model of IgSF11-PKM2 function during OC differentiation,
which we will test with the aid of hCD3-iFL, a retroviral (RV) construct to directly activate intracellular IgSF11 in
differentiating OCs. We will first investigate possible crosstalk between RANK and IgSF11-PKM2, which we
speculate is mediated by TRAF6-dependent K63-linked polyubiquitination of the IgSF11 scaffold protein PSD-
95. Second, we aim to identify kinases proximal to the IgSF11-PSD-95 complex that phosphorylate PKM2.
Third, we will use RV mutants to confirm the importance of various PKM2 modifications, PKM2 allosteric
confirmation, and PKM2 subcellular localization to OC differentiation. Finally, PKM2 is a well-characterized
enzymatic regulator of glycolysis, so we will employ metabolic assays and inhibitors to confirm the significance
of this aspect of PKM2 function to OC differentiation. These studies will be critically important to initial
validation and characterization of a putative IgSF11-PKM2 pathway and its function during OC differentiation.
在炎症条件下,骨骼破坏可能与骨头敏感的过度活性有关
破骨细胞(OCS),这不仅是由于太多OC的分化而导致的,而且还来自过度
OC的成熟。虽然当前大多数骨质流失治疗可以通过减少OC数来阻止骨质流失,但
如果将来的治疗策略专注于靶向OC成熟而不是早期OC,则可能会更好
分化以避免抑制取决于骨形成之间相互作用的耦合骨形成
成骨细胞和OC。为了靶向成熟,我们先前确定了免疫球蛋白超家族
成员11(IGSF11)作为调节OC分化的新细胞表面受体,而不是新骨
形成。为了表征IGSF11信号传导,我们通过质谱法分析了蛋白质磷酸化
在IGSF11激活并鉴定出丙酮酸激酶M2(PKM2)之后,催化了最后一步的酶
糖酵解,作为下游靶标。这一发现突出了可能比以前已知的更大的
OC分化和炎症性骨质流失期间代谢调节的决定性作用。因此,我们
提出以下具体目的:1。检查IGSF11-PKM2信号传导在炎症性骨质流失中的作用。
我们将通过使用LPS诱导的炎症性骨质流失的背景下调查OC表达的IGSF11
骨丢失模型。为了测试PKM2依赖性效应的贡献,我们将处理LPS诱导的IGSF11 - / -
PKM2的小分子调节剂(TEPP-46,Shikonin)的小鼠。我们的初步数据表明Tepp-
46 PKM2的激活减少了DSS诱导的骨质流失。检查IGSF11表达是否影响结肠炎
相关的骨质流失,我们将使用IGSF11缺陷型小鼠进行DSS诱导的结肠炎实验。我们将
还使用用TEPP-46或shikonin处理的IGSF11 - / - 小鼠进行DSS诱导的结肠炎实验。这些
研究对于建立IGSF11和PKM2对临床相关的贡献至关重要
炎症性骨质流失。 2。破骨细胞中IGSF11-PKM2信号传导机制的表征
分化。我们在OC分化过程中制定了IGSF11-PKM2函数的四步模型,
我们将借助HCD3-IFL(逆转录病毒(RV)构建体直接激活细胞内IGSF11
区分OC。我们将首先调查等级和IGSF11-PKM2之间可能的串扰,我们
猜测是由Traf6依赖性K63连接的多泛素化介导的IGSF11支架蛋白PSD-
95。第二,我们旨在鉴定与磷酸化PKM2的IGSF11-PSD-95复合物接近的激酶。
第三,我们将使用RV突变体确认各种PKM2修饰的重要性PKM2变构
确认和PKM2亚细胞定位到OC分化。最后,PKM2是一个很好的特征
糖酵解的酶调节剂,因此我们将使用代谢测定法和抑制剂来确认显着性
PKM2函数与OC分化的这一方面。这些研究对初始研究至关重要
推定的IGSF11-PKM2途径及其在OC分化过程中的功能的验证和表征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YONGWON CHOI其他文献
YONGWON CHOI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YONGWON CHOI', 18)}}的其他基金
IgSF11 Signaling Controls Osteoclast Maturation and Pathogenic Bone Loss
IgSF11 信号传导控制破骨细胞成熟和致病性骨质流失
- 批准号:
10544787 - 财政年份:2022
- 资助金额:
$ 35.75万 - 项目类别:
Regulation of T cell responses to oral antigens
T 细胞对口腔抗原反应的调节
- 批准号:
9306661 - 财政年份:2017
- 资助金额:
$ 35.75万 - 项目类别:
Dendritic Cell-Mediated Oral Antigen Tolerance and the Lung
树突状细胞介导的口腔抗原耐受和肺
- 批准号:
9238657 - 财政年份:2016
- 资助金额:
$ 35.75万 - 项目类别:
Cell Adhesion Regulation of Osteoclast Maturation
破骨细胞成熟的细胞粘附调节
- 批准号:
9899199 - 财政年份:2016
- 资助金额:
$ 35.75万 - 项目类别:
Dendritic Cell-Mediated Oral Antigen Tolerance and the Lung
树突状细胞介导的口腔抗原耐受和肺
- 批准号:
9086712 - 财政年份:2016
- 资助金额:
$ 35.75万 - 项目类别:
Identifying Rare Subtypes of CD8 T-cells Using Single Cell Reactors
使用单细胞反应器鉴定 CD8 T 细胞的稀有亚型
- 批准号:
9086041 - 财政年份:2016
- 资助金额:
$ 35.75万 - 项目类别:
Identifying Rare Subtypes of CD8 T-cells Using Single Cell Reactors
使用单细胞反应器鉴定 CD8 T 细胞的稀有亚型
- 批准号:
9262845 - 财政年份:2016
- 资助金额:
$ 35.75万 - 项目类别:
相似国自然基金
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:42207312
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
集成微流控芯片应用于高通量精准生物检体测定
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
硫酸盐还原菌生物膜活性的原位快速测定研究
- 批准号:41876101
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
冬虫夏草抗菌肽的序列测定及其生物学功能研究
- 批准号:81803848
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:
10606132 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别: