The XPA scaffold protein in Nucleotide Excision Repair
核苷酸切除修复中的 XPA 支架蛋白
基本信息
- 批准号:10334466
- 负责人:
- 金额:$ 31.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-09 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAntineoplastic AgentsAreaBindingBiochemicalBiochemistryC-terminalCancer EtiologyCarboplatinCellsCellular AssayCellular biologyCessation of lifeChemistryCisplatinComplexDNADNA AdductsDNA DamageDNA RepairDNA Repair DisorderDNA Repair PathwayDNA lesionDNA-Protein InteractionDefectDrug PrescriptionsEnsureEvaluationExcisionFoundationsGene MutationGeneticGenomeHereditary DiseaseHumanIn VitroIncidenceIndividualLaboratoriesLeadLesionMediatingMolecularMutagensMutationNeurologicNucleotide Excision RepairOligonucleotidesOncologyPathway interactionsPharmaceutical PreparationsPhenotypePositioning AttributePredispositionPropertyProteinsRAD23B geneRadiationReactionRepair ComplexResistanceResistance developmentRoleScaffolding ProteinSiteSkin CancerSourceStructureSunlightSurfaceSurgical incisionsTestingToxic Environmental SubstancesTranscription-Coupled RepairWorkXPA geneXeroderma Pigmentosumanticancer researchantitumor agentbasebiophysical techniquescancer therapygene repairimprovedin vivoinhibitorinsightinterestmultidisciplinaryprematureprotein protein interactionrecruitrepairedscaffoldsmall moleculesmall molecule inhibitorsolar ultraviolet radiationstructural biologysuccesstherapy outcometranscription factor TFIIHtumorultraviolet damageultraviolet irradiationxeroderma pigmentosum group A complementing protein
项目摘要
Nucleotide excision repair (NER) protects human cells by removing harmful DNA adducts formed by
environmental toxins and solar UV irradiation. Defects in NER in humans lead to the DNA repair disorder
xeroderma pigmentosum, which is characterized by high predisposition to skin cancer, neurological
abnormalities and premature death. The repair of damaged DNA by NER also has a downside – it contributes
significantly to the development of resistance of tumors to treatment with antitumor agents, in particular cis-
and carboplatin, two of the most widely prescribed drugs in oncology.
We propose to leverage the combined expertise of the Scharer and Chazin laboratories in chemistry,
biochemistry, cell biology, structural biology, and small molecule discovery to elucidate how the scaffold protein
XPA coordinates the assembly and organization of NER incision complexes. Despite its modest size (273
residues), XPA functions as the central scaffold of NER complexes, interacting with 4 key NER proteins as well
as DNA. However, how XPA is recruited to the site of damage and positions other factors through its various
interactions remains poorly understood. Moreover, given its essential role in organizing and orchestrating the
trajectory of NER complexes, XPA is an attractive potential Achilles Heel to target for suppressing NER.
Aim 1 will test the hypothesis that TFIIH recruits XPA to sites of UV damage through a proposed interaction
interface involving the C-terminal region of XPA and the p8 subunit of TFIIH. We will biochemically and
structurally characterize this interaction and determine how mutations in the interface that disturb this
interaction affect NER in vitro and in vivo. Abolishing the interaction between XPA and TFIIH will also address
the long-standing question of whether the steps following damage recognition are the same for global genome
and transcription-coupled NER – the arrival of TFIIH and XPA is the first step common to both pathways.
The action of TFIIH on damaged DNA creates an open “NER bubble” that provides a landing platform for XPA
and RPA and is required for NER incision. The scaffolding function of XPA is reliant on its coordination with
RPA, which binds the undamaged strand. Aim 2 will determine the molecular basis and functional implications
of the coordinated action of XPA and RPA. Structural, biochemical, and biophysical approaches combined with
cellular assays will test the hypothesis that the two interaction sites between XPA and RPA are simultaneously
engaged and contribute to NER in a cooperative fashion. Based on these results, our expertise in fragment
based molecular discovery will be used to develop and validate initial inhibitors targeting XPA-RPA interfaces.
These studies are expected to provide: (i) dramatic new mechanistic insights into the central role of XPA in
assembling and coordinating the NER machinery; (ii) the identity of XPA interaction surfaces that are critical to
NER; (iii) proof of principle that interfaces between XPA and other NER factors are suitable targets for
evaluating the potential of overcoming tumor resistance to DNA damaging therapies by suppressing NER.
核苷酸切除修复 (NER) 通过去除由以下物质形成的有害 DNA 加合物来保护人体细胞:
环境毒素和太阳紫外线照射导致人类 NER 缺陷导致 DNA 修复障碍。
色素性干皮病,其特征是高度易患皮肤癌、神经系统癌症
NER 修复受损 DNA 也有一个缺点——它会导致异常和过早死亡。
显着影响肿瘤对抗肿瘤药物治疗的耐药性的发展,特别是顺式-
和卡铂,这是肿瘤学中最广泛使用的两种药物。
我们建议利用 Scharer 和 Chazin 实验室在化学方面的综合专业知识,
生物化学、细胞生物学、结构生物学和小分子发现,以阐明支架蛋白如何
XPA 协调 NER 切口复合物的组装和组织,尽管其尺寸不大(273)。
残基),XPA 充当 NER 复合物的中心支架,还与 4 个关键 NER 蛋白相互作用
然而,XPA 如何被招募到损伤部位并通过其各种因素定位其他因素。
此外,鉴于其在组织和协调方面的重要作用,人们对其的了解仍知之甚少。
根据 NER 复合物的轨迹,XPA 是抑制 NER 的一个有吸引力的潜在致命弱点。
目标 1 将测试 TFIIH 通过拟议的相互作用将 XPA 招募到紫外线损伤部位的假设
涉及 XPA 的 C 末端区域和 TFIIH 的 p8 亚基的界面我们将进行生化和分析。
从结构上表征这种相互作用,并确定界面中的突变如何干扰这种相互作用
相互作用影响 NER 体外和体内 消除 XPA 和 TFIIH 之间的相互作用也将解决。
长期存在的问题是,损伤识别后的步骤对于全球基因组是否相同
和转录偶联的 NER——TFIIH 和 XPA 的到来是这两条途径共同的第一步。
TFIIH 对受损 DNA 的作用创造了一个开放的“NER 气泡”,为 XPA 提供了着陆平台
XPA 的支架功能依赖于其与 RPA 的协调。
RPA 结合未受损的链,目标 2 将确定分子基础和功能含义。
XPA 和 RPA 的协调作用与结构、生物化学和生物物理方法相结合。
细胞分析将检验 XPA 和 RPA 之间的两个相互作用位点同时存在的假设
基于这些结果,我们的专业知识碎片化。
基于分子发现的方法将用于开发和验证针对 XPA-RPA 界面的初始抑制剂。
这些研究预计将提供:(i)对 XPA 在
组装和协调 NER 机制;(ii) 对于 XPA 交互表面至关重要
NER;(iii) XPA 和其他 NER 因素之间的接口是合适目标的原理证明
评估通过抑制 NER 克服肿瘤对 DNA 损伤疗法耐药性的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WALTER J. CHAZIN其他文献
WALTER J. CHAZIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WALTER J. CHAZIN', 18)}}的其他基金
The XPA scaffold protein in Nucleotide Excision Repair
核苷酸切除修复中的 XPA 支架蛋白
- 批准号:
10733350 - 财政年份:2018
- 资助金额:
$ 31.24万 - 项目类别:
Structural Biology of Multi-Domain Proteins and Multi-Protein Machinery in DNA Replication and Repair
DNA 复制和修复中多域蛋白和多蛋白机制的结构生物学
- 批准号:
10393403 - 财政年份:2016
- 资助金额:
$ 31.24万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10796477 - 财政年份:2016
- 资助金额:
$ 31.24万 - 项目类别:
Structural Biology of Multi-Domain Proteins and Multi-Protein Machinery in DNA Replication and Repair
DNA 复制和修复中多域蛋白和多蛋白机制的结构生物学
- 批准号:
10382072 - 财政年份:2016
- 资助金额:
$ 31.24万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10544307 - 财政年份:2016
- 资助金额:
$ 31.24万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10330665 - 财政年份:2016
- 资助金额:
$ 31.24万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10809376 - 财政年份:2016
- 资助金额:
$ 31.24万 - 项目类别:
Host-mediated zinc sequestration during Acinetobacter baumannii infection
鲍曼不动杆菌感染期间宿主介导的锌螯合
- 批准号:
10680779 - 财政年份:2013
- 资助金额:
$ 31.24万 - 项目类别:
Host-mediated zinc sequestration during Acinetobacter baumannii infection
鲍曼不动杆菌感染期间宿主介导的锌螯合
- 批准号:
10331783 - 财政年份:2013
- 资助金额:
$ 31.24万 - 项目类别:
Host-mediated zinc sequestration during Acinetobacter baumannii infection
鲍曼不动杆菌感染期间宿主介导的锌螯合
- 批准号:
8504420 - 财政年份:2013
- 资助金额:
$ 31.24万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 31.24万 - 项目类别:
Cancer Therapeutics and Host Response Research Program
癌症治疗和宿主反应研究计划
- 批准号:
10625756 - 财政年份:2023
- 资助金额:
$ 31.24万 - 项目类别:
Investigating mitochondrial dysfunction in high-risk prostate cancer
研究高危前列腺癌中的线粒体功能障碍
- 批准号:
10570345 - 财政年份:2023
- 资助金额:
$ 31.24万 - 项目类别:
Small molecule modulation of 14-3-3 protein-protein interactions
14-3-3 蛋白质-蛋白质相互作用的小分子调节
- 批准号:
10607941 - 财政年份:2023
- 资助金额:
$ 31.24万 - 项目类别:
Defining kinase interaction pathways to enhance anti-cancer efficacy and minimize associated morbidities of kinase inhibitor drugs.
定义激酶相互作用途径,以增强抗癌功效并最大限度地减少激酶抑制剂药物的相关发病率。
- 批准号:
10644554 - 财政年份:2023
- 资助金额:
$ 31.24万 - 项目类别: