Functional assessment of enhancer-gene interactions in vivo
体内增强子-基因相互作用的功能评估
基本信息
- 批准号:10331859
- 负责人:
- 金额:$ 24.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-07 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptedAffectArchitectureAreaBiological ModelsBiologyCRISPR/Cas technologyCategoriesCellsChromatin StructureCodeDNADevelopmentDiseaseDistalDistantEducational workshopElementsEmbryoEnhancersEnsureEnvironmentEvolutionFacultyGene ExpressionGene Expression RegulationGene TargetingGenesGenetic TranscriptionGenomeGenomicsGoalsHeart DiseasesHumanHuman GenomeHuman Genome ProjectKnock-inKnock-in MouseKnock-outLeadershipLimb DevelopmentLimb structureLinkLocationMalignant NeoplasmsMapsMediatingMentorsMentorshipMethodsMusMutationOrganismPatternPhasePhenotypePlayPositioning AttributeProteinsRegulationResearchResearch ProposalsResearch TrainingResolutionRodentRoleSHH geneSecureSeriesSpecificityTechnologyTestingTissuesTrainingUntranslated RNAWorkcareer developmentcohortembryo tissueexperimental studygene interactiongenome analysisgenome editinggenome-widegenome-wide analysisgenomic locushuman diseasein vivoinsightmammalian genomenovelpromoterresponseskillstechnology developmenttranscriptome sequencing
项目摘要
PROJECT SUMMARY
Transcriptional enhancers are a predominant category of functional elements in the non-coding portion of the
human genome, far outnumbering the ~20,000 protein-coding genes. Mutations affecting enhancers have
been implicated in human disease, and comprehensively understanding the genome-wide architecture and
function of enhancers remains a major unsolved challenge arising from The Human Genome Project. Despite
substantial progress in mapping of these elements (e.g., by the ENCODE consortium), the in vivo target genes
of enhancers are generally unknown, and the mechanisms of their long range regulation during development
are not well explored. Recently, I developed a novel method that allows manipulation of enhancers at their
endogenous genomic location in mice using CRISPR/Cas9 genome editing (Kvon et al., Cell, 2016). In this
application, I propose to better understand the mechanisms of gene regulation by distant-acting enhancers
through in vivo mouse studies, exploiting this highly efficient CRISPR/Cas9 genome editing technology to
create enhancer knock-out and knock-in mice and employing novel methods to map enhancer-promoter
interactions. I will address the following questions regarding distal enhancer function in the genome: 1) Which
genes do different classes of enhancers regulate? 2) Is there enhancer-promoter specificity for distant-acting
enhancers? and 3) What are the consequences of enhancer loss or replacement on an organism's function?
Mentored phase: First, I propose to adapt CRISPR/Cas9 genome editing for studying long-range enhancer-
gene interactions in vivo using mouse embryonic limb as a model system. I will create a series of enhancer
knock-outs to identify their target gene(s) and a series of enhancer knock-ins to study enhancer-promoter
specificity. Second, I will adopt and optimize the Capture-C technology to identify interaction partners of
enhancers directly in mouse tissues. Independent phase: I will use methods developed in the mentored
phase to systematically map target genes for important developmental enhancers in vivo and to gain a detailed
understanding of the mechanisms governing long-range enhancer-promoter interactions on a genomic scale. I
will also use elucidated enhancer-promoter interactions to study basic principles of long-range enhancer
regulation in the mammalian genome using CRISPR/Cas9 technology. This will enable me to develop several
long-term research directions, focused on the role of enhancer-gene interactions in human evolution, disease,
and development. The main areas of research training will include: 1) Further advancing the use of
CRISPR/Cas9 in mice, 2) Capture-C technology development in mouse tissues, and 3) computational genome
analysis. My mentor (Dr. Len Pennacchio) and co-mentor (Dr. Axel Visel) are leaders in these fields. My career
development activities will focus on skills in key areas of my research, attending courses and workshops,
developing leadership and mentorship skills, and securing a faculty position. To ensure progress in my goals I
have also established a scientific advisory board consisting of my mentors, and Drs. D. Dickel, and E. Rubin.
项目摘要
转录增强剂是在非编码部分中功能元素的主要类别
人类基因组,远远超过约20,000个蛋白质编码基因。影响增强子的突变具有
与人类疾病有关,并全面了解全基因组的结构和
增强子的功能仍然是人类基因组项目引起的主要未解决的挑战。尽管
这些元素的映射(例如,通过编码财团),体内靶基因的映射取得了长足进展
增强剂通常是未知的,并且在开发过程中的远程调节机制
探索不好。最近,我开发了一种新颖的方法,该方法允许在他们的
使用CRISPR/CAS9基因组编辑小鼠中的内源基因组位置(Kvon等,Cell,2016)。在这个
应用,我建议通过远距离作用增强子更好地理解基因调节的机制
通过体内小鼠研究,利用这种高效的CRISPR/CAS9基因组编辑技术
创建增强剂的敲除和敲门鼠标,并采用新颖的方法来绘制增强器促进剂
互动。我将解决有关基因组远端增强子功能的以下问题:1)
基因是否会调节不同类别的增强子? 2)是否有增强剂启动器特异性的特异性
增强剂? 3)增强子丢失或替换对生物体功能的后果是什么?
指导阶段:首先,我建议适应CRISPR/CAS9基因组编辑,以研究远程增强子 -
使用小鼠胚胎肢体作为模型系统的体内基因相互作用。我将创建一系列增强器
确定其靶基因和一系列增强子敲击以研究增强剂促进剂的敲除
特异性。其次,我将采用并优化捕获-C技术来确定的交互合作伙伴
直接在小鼠组织中的增强子。独立阶段:我将使用指导中开发的方法
阶段到系统地绘制目标基因的体内重要发育增强子的阶段,并获得详细的
理解有关基因组量表上远程增强子促销相互作用的机制。我
还将使用阐明的增强器促销相互作用来研究远程增强器的基本原理
使用CRISPR/CAS9技术在哺乳动物基因组中进行调节。这将使我能够发展几个
长期研究方向,重点是增强子 - 基因相互作用在人类进化,疾病,
和发展。研究培训的主要领域将包括:1)进一步前进
小鼠的CRISPR/CAS9,2)捕获C中的C技术开发和3)计算基因组
分析。我的导师(Len Pennacchio博士)和同事(Axel Visel博士)是这些领域的领导者。我的职业
开发活动将集中于我研究的关键领域的技能,参加课程和讲习班,
发展领导能力和指导能力,并确保教师职位。为了确保我的目标进展
还建立了一个由我的导师和博士组成的科学顾问委员会。 D. Dickel和E. Rubin。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evgeny Kvon其他文献
Evgeny Kvon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evgeny Kvon', 18)}}的其他基金
Deciphering the mechanism of long-range gene regulation in vivo
破译体内长程基因调控机制
- 批准号:
10473041 - 财政年份:2022
- 资助金额:
$ 24.17万 - 项目类别:
Functional assessment of enhancer-gene interactions in vivo
体内增强子-基因相互作用的功能评估
- 批准号:
9545036 - 财政年份:2017
- 资助金额:
$ 24.17万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别:
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别:
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别: