Molecular Mechanisms of Co-Transcriptional Ribonucleoprotein Assembly
共转录核糖核蛋白组装的分子机制
基本信息
- 批准号:10331029
- 负责人:
- 金额:$ 8.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2022-08-01
- 项目状态:已结题
- 来源:
- 关键词:AwardBacteriaBindingBinding ProteinsBiochemistryBiogenesisBiological ModelsCellsCollaborationsComplementComplexCoupledCouplingDNA Polymerase IDiseaseDissectionEukaryotaEventFellowshipGene ExpressionGenetic DiseasesGenetic TranscriptionGoalsHigh-Throughput Nucleotide SequencingIn VitroIndividualKineticsLightMalignant NeoplasmsMeasuresMentorsMethodsModelingModificationMolecularMolecular ChaperonesMolecular MachinesMonitorMultiplexed Analysis of Projections by SequencingMutationNucleotidesPathway interactionsPhasePlayProcessProteinsRNARNA BindingRNA FoldingRNA ProbesRNA chemical synthesisRNA-Protein InteractionResolutionRibonucleoproteinsRibosomal ProteinsRibosomal RNARibosomesRoleSmall Nucleolar RibonucleoproteinsSpliceosomesStructureSystemTestingTimeTrainingU3 small nuclear ribonucleoproteinWorkYeastsdimethyl sulfateexperienceexperimental studyin vivoinsightparticlepreventprotein complexrecruitsingle moleculesuccesstoolyeast genetics
项目摘要
PROJECT SUMMARY
RNAs are integral components of molecular machines that carry out all essential processes in gene expression.
To expand the functional landscape of these molecular machines, RNAs synergize with proteins to form large
complexes called ribonucleoproteins (RNPs). RNPs are formed initially during transcription, where synthesis of
the RNA is coupled to RNA folding and association of proteins. A possible consequence of this coupling is that
improper co-transcriptional folding may delay protein association, thereby hindering RNP assembly. Yet, RNPs
like the ribosome form within minutes in the cell suggesting that there are mechanisms to prevent misfolding or
slow assembly. The ribosome represents an ideal model system for studying co-transcriptional RNP assembly,
because it contains a highly structured RNA that must be properly folded and assembled to function. Decades
of studies on bacterial ribosome assembly have supported a model for assembly in which ribosomal protein
association is strictly hierarchical; however, recent evidence from my work and others suggests that while stable
incorporation may be hierarchical, underlying transient protein binding nonetheless influences the RNA folding
path. The mechanism for how proteins chaperone the RNA during transcription to accelerate assembly is
currently unclear. Furthermore, while a similar ordered assembly mechanism has been proposed for eukaryotic
ribosome assembly, it is likely that underlying protein binding dynamics also plays a role in guiding folding of the
RNA during transcription. This proposal aims to understand the molecular consequences that arise from coupling
between transcription, RNA folding, and ribosome assembly by measuring RNA folding directly during co-
transcriptional assembly (Aim 1) and visualizing protein association on nascent eukaryotic RNAs (Aim 2). To
examine RNA folding during transcription-coupled ribosome assembly in Aim 1, I will probe the RNA structure in
real time in vitro during transcription using dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-
MaPseq). This method will provide a complete picture of the folding pathway while the RNA is being synthesized
in the presence and absence of proteins, thereby allowing for dissection of the individual contributions to the
assembly mechanism. Studying RNA folding directly will be complemented by single-molecule experiments in
Aim 2 that directly examine protein/RNP binding kinetics. Specifically, I will examine binding of UtpA and U3
snoRNP in real time to nascent yeast ribosomal RNA. Transitioning to studying transcription-coupled ribosome
biogenesis in eukaryotes will provide new insight into how transient binding may be a common theme in RNP
assembly. Results from the K99 phase will be expanded upon in the independent phase to examine folding and
assembly of larger yeast assembly intermediates, such as the 5’ external transcribed spacer particle. In total,
these aims will advance our understanding of the mechanistic underpinnings of how transcription-coupled RNP
assembly occurs normally and shed light on how RNP assembly can be altered in disease.
项目摘要
RNA是分子机器的组成部分,它们在基因表达中执行所有基本过程。
为了扩大这些分子机器的功能景观,RNA与蛋白质协同形成大型
称为核糖核蛋白(RNP)的复合物。 RNP最初是在转录过程中形成的,其中合成
RNA与RNA折叠和蛋白质缔合耦合。这种耦合的可能结果是
不正确的共转录折叠可能会延迟蛋白质关联,从而阻碍RNP组件。但是,RNP
就像细胞中几分钟内的核糖体形式一样,表明有一些机制可以防止错误折叠或
缓慢组装。核糖体代表研究共转录RNP组件的理想模型系统,
因为它包含一个高度结构化的RNA,必须正确折叠并组装以功能。几十年
细菌核糖体组装的研究支持了一种用于组装的模型,其中核糖体蛋白
协会严格是分层的;但是,我工作和其他人的最新证据表明,虽然稳定
掺入可能是分层的,基本的瞬时蛋白结合仍会影响RNA折叠
小路。蛋白质在转录到加速组装过程中RNA伴侣的机制是
目前不清楚。此外,虽然已经提出了类似的有序装配机制,以实现真核。
核糖体组装,潜在的蛋白质结合动力学也可能在引导折叠中起作用
转录过程中的RNA。该建议旨在了解耦合产生的分子后果
在转录,RNA折叠和核糖体组装之间,通过直接测量RNA折叠
转录组装(AIM 1)和新生真核生物RNA上的蛋白质关联(AIM 2)。到
检查在AIM 1中的转录耦合核糖体组装过程中的RNA折叠,我将探测RNA结构
使用测序使用二甲基硫酸二甲基(DMS)突变分析在转录过程中实时实时(DMS-)
MAPSEQ)。该方法将在合成RNA时提供折叠途径的完整图片
在存在和不存在蛋白质的情况下,因此可以解剖个人对该蛋白的贡献
组装机制。直接研究RNA折叠将通过单分子实验完成
AIM 2直接检查蛋白质/RNP结合动力学。具体而言,我将检查UTPA和U3的绑定
实时snonp snornp新生的酵母核糖体RNA。过渡到研究转录耦合核糖体
真核生物中的生物发生将提供新的见解,了解瞬态结合如何成为RNP的常见主题
集会。 K99阶段的结果将在独立阶段扩展,以检查折叠和
较大的酵母组装中间体的组装,例如5'外部转录的间隔粒子。总共
这些目标将提高我们对转录耦合RNP的机械基础的理解
组装正常发生,并阐明了如何在疾病中改变RNP组装。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margaret Louise Rodgers其他文献
Margaret Louise Rodgers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margaret Louise Rodgers', 18)}}的其他基金
Visualizing Transcription-Coupled 30S Ribosome Assembly using Single-Molecule and Time-Resolved X-ray Footprinting
使用单分子和时间分辨 X 射线足迹可视化转录偶联的 30S 核糖体组装
- 批准号:
9815918 - 财政年份:2018
- 资助金额:
$ 8.98万 - 项目类别:
相似国自然基金
基于棒状植物病毒的多糖结合疫苗用于预防细菌/真菌感染研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于棒状植物病毒的多糖结合疫苗用于预防细菌/真菌感染研究
- 批准号:52273160
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
脂多糖结合蛋白介导的细菌外膜囊泡招募及铁转运机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
含胆盐水解酶细菌对结合/游离胆汁酸池的调节及影响肠道菌群结构变化的机制研究
- 批准号:32170062
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
含胆盐水解酶细菌对结合/游离胆汁酸池的调节及影响肠道菌群结构变化的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Regulatory mechanism of novel host-relevant biofilm formation protein in non-Cholera Vibrio species
非霍乱弧菌中新型宿主相关生物膜形成蛋白的调节机制
- 批准号:
10505474 - 财政年份:2023
- 资助金额:
$ 8.98万 - 项目类别:
Pyocins as antibacterials to treat Pseudomonas aeruginosa infections
脓毒素作为抗菌药物治疗铜绿假单胞菌感染
- 批准号:
10727705 - 财政年份:2023
- 资助金额:
$ 8.98万 - 项目类别:
Microfluidic Preparation of Specimens to Enable Submillisecond Time-Resolved Cryo-EM
样品的微流体制备以实现亚毫秒时间分辨冷冻电镜
- 批准号:
10736937 - 财政年份:2023
- 资助金额:
$ 8.98万 - 项目类别:
Intestinal Intelectin-1 regulation of obesity development
肠道 Intelectin-1 对肥胖发展的调节
- 批准号:
10739656 - 财政年份:2023
- 资助金额:
$ 8.98万 - 项目类别:
Role of Gut-Immune Interactions in Aging-Associated Bladder Cancer
肠道免疫相互作用在衰老相关膀胱癌中的作用
- 批准号:
10429068 - 财政年份:2023
- 资助金额:
$ 8.98万 - 项目类别: