Studies of Allostery between Multi-domain Proteins and Nucleic Acid Complexes
多结构域蛋白与核酸复合物的变构研究
基本信息
- 批准号:10331326
- 负责人:
- 金额:$ 34.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAllosteric RegulationAllosteric SiteAmino AcidsBindingBiologicalBiological AssayBiomedical EngineeringCRISPR/Cas technologyClustered Regularly Interspaced Short Palindromic RepeatsCommunicationComplexComputer SimulationComputing MethodologiesCouplingDNADeoxyribonucleasesDistantDrug TargetingEngineeringEnsureEnzymesGaussian modelGuidelinesJointsLiquid substanceMacromolecular ComplexesMediatingMethodologyMethodsModernizationMolecularMotionMutagenesisMutationNucleic AcidsPathway AnalysisPathway interactionsProcessPropertyProtein EngineeringProteinsRNARelaxationResearchResearch PersonnelRoleSignal TransductionSiteSite-Directed MutagenesisSpecificitySpliceosomesStructureSystemTechniquesTertiary Protein StructureTherapeuticUniversitiesbasebiophysical analysisbiophysical techniquescomputer studiesdrug discoveryendonucleaseexperimental studyflexibilitygenome editingimprovedinnovationinsightinterestmacromoleculemillisecondmolecular dynamicsmutantnetwork modelsnovelnucleaseprecision medicineprogramsprotein complexrational designresponsesimulationsmall molecule inhibitortool
项目摘要
Project Summary
The PI Batista from Yale and co-investigators (Lisi, Brown University, and Palermo, UC Riverside) will
investigate allosteric pathways in the CRISPR-Cas9 system – composed of the multi-domain endonuclease
Cas9 in complex with RNA and DNA. The system allows for studies of long-range signaling critical for allosteric
mechanisms that achieve enhanced selectively and tunability of the protein/nucleic acid complex response.
CRISPR-Cas9 is an innovative therapeutic tool with widely demonstrated capabilities for genome editing. An
outstanding challenge of great research interest is to develop a detailed understanding of allosteric signals in
CRISPR-Cas9 responsible for the DNA editing capability. Such understanding would have profound implications
for bioengineering and precision medicine, as well as for establishing modern paradigms of allosteric regulation
in protein/nucleic acid machines. A substantial hurdle in investigating the mechanisms of large protein/nucleic
acid complexes is the inherent difficulty of adapting experimental and computational methodologies to capture
the intrinsic flexibility of these structures essential for functionality. We propose to implement a synergistic
approach of solution NMR and molecular dynamics (MD) in combination with established and novel methods for
analysis of allosteric networks to elucidate the structural and dynamic determinants of allosteric signaling in
CRISPR-Cas9. We have recently identified a pathway of dynamic communication connecting multiple domains
of Cas9 through millisecond timescale motion that spans its critical nucleases, consistent with a regulatory signal
proposed through experimental characterization. Thus, the following hypotheses guide our specific aims: (i) A
well-defined allosteric pathway controls the CRISPR-Cas9 functionality; (ii) The allosteric interplay between
spatially distant protein domains activates the DNA nuclease function; (iii) Modulation of the allosteric motions
through the mutation of critical residues achieves altered specificity; and (iv) Dynamically-driven signaling is an
intrinsic property of protein-nucleic acid macromolecular complexes. Our specific aims are: Aim 1: Characterize
the allosteric control of the HNH nuclease; Aim 2: Determine the allosteric pathway from HNH to RuvC and the
allosteric role of the PAM recognition sequence; and Aim 3: Characterize the effect of mutations on the allosteric
pathway. The research program involves multiple cycles of an iterative approach where, in each cycle, allosteric
pathways are explored through the analysis of differential motions probed by liquid-NMR relaxation methods and
computation (MD and network analysis), obtaining valuable information on key amino acid residues and specific
interactions responsible for transmitting structural or dynamical changes spanning the allosteric and active sites.
The resulting insight provides guidelines for the next round of studies of mutants and modulators in a joint
experimental and theoretical effort to elucidate the CRISPR-Cas9 allosteric mechanisms.
项目摘要
来自耶鲁大学和共同研究员的Pi Batista(Lisi,Brown University和Palermo,UC Riverside)将
研究CRISPR-CAS9系统中的变构途径 - 由多域内切酶组成
Cas9与RNA和DNA复杂。该系统允许研究对变构至关重要的远程信号传导
实现蛋白质/核酸复合物反应的可鼠能力的机制。
CRISPR-CAS9是一种创新的治疗工具,具有广泛的基因组编辑功能。一个
重大研究兴趣的杰出挑战是对变构信号的详细理解
CRISPR-CAS9负责DNA编辑功能。这种理解将具有深远的影响
用于生物工程和精确医学,以及建立变构法规的现代范式
在蛋白质/核酸机器中。研究大蛋白/核的机理的重大障碍
酸络合物是对适应实验和计算方法捕获的继承困难
这些结构的固有灵活性对于功能必不可少。我们建议实施协同作用
溶液NMR和分子动力学(MD)的方法与已建立的新方法
分析变构网络,以阐明变构信号的结构和动态确定器
CRISPR-CAS9。我们最近确定了连接多个域的动态通信的途径
cas9通过毫秒的时间尺度运动跨越其关键核,与调节信号一致
通过实验表征提出。那就是以下假设指导我们的具体目的:(i)
定义明确的变构途径控制CRISPR-CAS9功能; (ii)之间的变构相互作用
空间远处的蛋白质结构域激活DNA核酸酶功能。 (iii)调节变构运动
通过关键残差的突变实现了特异性的改变; (iv)动态驱动的信号是
蛋白质核酸大分子复合物的内在特性。我们的具体目的是:目标1:特点
HNH核酸酶的变构控制; AIM 2:确定从HNH到RUVC的变构途径和
PAM识别序列的变构作用;和目标3:表征突变对变构的影响
路径。该研究计划涉及迭代方法的多个循环,在每个周期中,变构中
通过分析液体-NMR弛豫方法探测的差分运动,探索了途径
计算(MD和网络分析),获得有关关键氨基酸残差和特定的价值信息
负责传输结构或动态变化的相互作用跨越了变构和活性位点。
由此产生的见解为关节中突变体和调节剂的下一轮研究提供了指南
实验和理论上的努力阐明了CRISPR-CAS9变构机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor S Batista其他文献
Regioselective Ultrafast Photoinduced Electron Transfer from Naphthols to Halocarbon Solvents.
从萘酚到卤代烃溶剂的区域选择性超快光致电子转移。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:5.7
- 作者:
Subhajyoti Chaudhuri;Atanu Acharya;E. Nibbering;Victor S Batista - 通讯作者:
Victor S Batista
Victor S Batista的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor S Batista', 18)}}的其他基金
Studies of Allostery between Multi-domain Proteins and Nucleic Acid Complexes
多结构域蛋白与核酸复合物的变构研究
- 批准号:
10545750 - 财政年份:2021
- 资助金额:
$ 34.87万 - 项目类别:
Computational and Biochemical Studies of Temperature Effects on Allostery in the Imidazole Glycerol Phosphate Synthase (IGPS) from T. maritima
温度对 T. maritima 咪唑甘油磷酸合酶 (IGPS) 变构影响的计算和生化研究
- 批准号:
10220056 - 财政年份:2014
- 资助金额:
$ 34.87万 - 项目类别:
Computational and Biochemical Studies of Allostery in the IGPS of T. maritima
T. maritima IGPS 变构的计算和生化研究
- 批准号:
8853887 - 财政年份:2014
- 资助金额:
$ 34.87万 - 项目类别:
Computational and Biochemical Studies of Allostery in the IGPS of T. maritima
T. maritima IGPS 变构的计算和生化研究
- 批准号:
8632085 - 财政年份:2014
- 资助金额:
$ 34.87万 - 项目类别:
Computational and Biochemical Studies of Temperature Effects on Allostery in the Imidazole Glycerol Phosphate Synthase (IGPS) from T. maritima
温度对 T. maritima 咪唑甘油磷酸合酶 (IGPS) 变构影响的计算和生化研究
- 批准号:
9978862 - 财政年份:2014
- 资助金额:
$ 34.87万 - 项目类别:
Studies of redox-active sites in Photosystem II
光系统 II 中氧化还原活性位点的研究
- 批准号:
7904243 - 财政年份:2009
- 资助金额:
$ 34.87万 - 项目类别:
相似国自然基金
基于钙敏感受体的不同激活状态进行多肽变构调节剂筛选以及结构导向的化学修饰改造
- 批准号:22307113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GABAB受体复合体变构调节的生理和病理研究
- 批准号:32330049
- 批准年份:2023
- 资助金额:221 万元
- 项目类别:重点项目
热休克蛋白90对calpain-1的变构调节机制及其对鸡肉嫩度的影响
- 批准号:32372406
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
P2X3靶向的无味觉失调的变构调节新策略及用于缓解原因未明难治性咳嗽的新分子发现
- 批准号:32371289
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
AMPA受体正向变构调节剂快速抗抑郁作用及其神经机制研究
- 批准号:82371524
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
Discovering and Exploiting Caspase Regulatory, Allosteric and Exosites
发现和利用 Caspase 调节、变构和外切位点
- 批准号:
10623661 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Inhibitors of Human Factor XIIIa as New Anticoagulants
人类因子 XIIIa 抑制剂作为新型抗凝剂
- 批准号:
10629057 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Elucidating the SCP4 pathway as a multi-catalytic signaling dependency in acute myeloid leukemia
阐明 SCP4 通路作为急性髓系白血病的多催化信号传导依赖性
- 批准号:
10753227 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Exploiting new approaches for selective inhibition of trypsins
开发选择性抑制胰蛋白酶的新方法
- 批准号:
10338695 - 财政年份:2022
- 资助金额:
$ 34.87万 - 项目类别:
Exploiting new approaches for selective inhibition of trypsins
开发选择性抑制胰蛋白酶的新方法
- 批准号:
10542402 - 财政年份:2022
- 资助金额:
$ 34.87万 - 项目类别: