The mammalian multi-tRNA synthetase complex
哺乳动物多tRNA合成酶复合物
基本信息
- 批准号:10331178
- 负责人:
- 金额:$ 49.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAllelesAmino AcidsAmino Acyl-tRNA SynthetasesArchitectureAtrophicBindingBiochemical GeneticsCell physiologyCellsCentral Nervous System DiseasesCerebrumChildCognitiveComplexComputer softwareCoupledCytoplasmic ProteinDNA Sequence AlterationDataData AnalysesDefectDiseaseEtiologyEventExhibitsFluorescenceFoxesFunctional disorderGenesGenetic TranslationGlutamine-tRNA ligaseGoalsGrantHealthHumanLeadLengthMammalian CellMass Spectrum AnalysisMessenger RNAMethodsMicrocephalyModelingMolecularMotorMultiprotein ComplexesMutateMutationMyelinNeurodegenerative DisordersNomenclaturePathologicPathologyPeptidesPhotobleachingPositioning AttributeProtein BiosynthesisProteinsReportingRibosomesRoleScaffolding ProteinSodium ChlorideSpecificityStimulusStructural ModelsStructureSulfoxideTestingTranslationscrosslinkdensitydesignexperimental studyfluorescence imagingimprovedinsightinstrumentationinterestknock-downleukodystrophymolecular modelingneuropathologyprogramsprotein complexsingle moleculespatial relationshipstoichiometry
项目摘要
Project Summary/Abstract
Mammalian cells contain a cytoplasmic multi-tRNA synthetase complex (MSC) consisting of 8 aminoacyl-tRNA
synthetases (AARSs) and 3 non-synthetase proteins. AARSs in the MSC function as “gene decoders” during
mRNA translation, but also exhibit non-canonical functions outside the MSC. However, the assembly, structure,
and function of the MSC are poorly understood. Importantly, mutations in genes encoding 7/11 constituents
cause central nervous system (CNS) disorders – five cause hypomyelinating leukodystrophy (HLD), and two
others cause progressive microcephaly. We will utilize state-of-the-art molecular approaches to improve our
understanding of the MSC, and its potential role in neuropathology. Our proposed Multiple-PI program takes
advantage of the expertise of two highly collaborative PI's – Paul Fox (Contact PI), a molecular biologist with
long-term interest in tRNA synthetases and the MSC, and Valentin Gogonea (Multiple PI), a physical chemist
with expertise in analysis and molecular modeling of multi-protein complexes. We will determine the quaternary
structure of the MSC by cross-linking mass spectrometry (XL-MS), a state-of-the-art method that facilitates
analysis of otherwise intractable complexes. To date we have found 19 inter-protein cross-links between all 11
MSC constituents, and 118 intra-protein cross-links. We have generated an initial model of the MSC that will
be refined here by XL-MS experiments with expanded amino acid specificity, and by SiMPull (single-molecule
pulldown) coupled with single-molecule fluorescence to determine stoichiometry. In addition, we will investigate
the mechanism of assembly of the MSC. Constitutive, multi-protein complexes are thought to be assembled by
domain-specific interactions between fully-formed, mature constituents (“post-translational assembly”).
However, assembly of some complexes utilizes a “co-translational assembly” mechanism in which a mature
constituent interacts with the nascent peptide of a partner constituent as it emerges from the ribosome. In
preliminary data we show at least 10 pairs of MSC constituents interact co-translationally. We will apply these
mechanistic approaches to elucidate the role of two MSC constituents in CNS diseases – genetic defects in
QARS1 and EPRS1 that cause microcephaly and HLD, respectively. Our preliminary studies indicate that
constituent mutation or suppression can lead to extra-MSC accumulation. Our preliminary studies have led us
to propose the following hypothesis: The mammalian MSC is a compact structure assembled in part by an
orderly sequence of co-translational interactions, however, mis-assembly or mutation can induce extra-MSC
accumulation of constituents, with potentially deleterious downstream consequences. We will test this
hypothesis by (1) determining MSC quaternary structure and component stoichiometry, and (2) determining the
role of co-translational interactions in MSC formation and integrity. We anticipate that elucidation of the
structure and assembly of the MSC will provide insights into mechanisms by which molecular defects in MSC
constituents can cause severe pathological disturbances, in particular, debilitating disorders of the CNS.
项目摘要/摘要
哺乳动物细胞含有由8个氨基酰基-TRNA组成的细胞质多-TRNA合成酶复合酶(MSC)
合成酶(AARSS)和3种非核酶蛋白。 MSC中的AARS在“基因解码器”中的功能
mRNA翻译,但也暴露了MSC之外的非典型功能。但是,组件,结构,
理学硕士的功能知之甚少。重要的是,编码7/11的基因中的突变构成
引起中枢神经系统(CNS)疾病 - 五个导致白细胞营养不良(HLD)的降低责任和两个
其他人会导致渐进性。我们将利用最先进的分子方法来改善我们的
了解MSC及其在神经病理学中的潜在作用。我们提出的多重PI计划需要
两个高度协作PI的专业知识的优势 - Paul Fox(联系PI),他是分子生物学家
对TRNA合成酶和MSC的长期兴趣,以及Valentin Gogonea(多个PI),一名物理化学家
具有多蛋白质复合物的分析和分子建模方面的专业知识。我们将确定第四纪
通过交联质谱法(XL-MS)的结构,这是一种促进的最先进方法
分析原本棘手的复合物。迄今为止,我们发现了所有11个之间的19个蛋白质间交联
MSC构成118个蛋白质交联。我们已经生成了MSC的初始模型
可以通过具有扩展的氨基酸特异性的XL-MS实验和Simpull(单分子
下拉)与单分子荧光结合以确定化学计量。此外,我们将调查
MSC组装机制。宪法,多蛋白络合物被认为是由
完整形成的成熟一致性之间的域特异性相互作用(“翻译后组装”)。
但是,一些配合物的组装利用了“共译组装”机制,其中成熟
成分与伴侣成分的新生意大利辣香肠相互作用,因为它是从核糖体出来的。在
初步数据我们显示至少10对MSC构成共同翻译。我们将应用这些
阐明两种MSC在中枢神经系统疾病中的作用的机理方法 - 遗传缺陷
QARS1和EPRS1分别引起小头畸形和HLD。我们的初步研究表明
组成突变或抑制会导致超过MSC的积累。我们的初步研究使我们
提出以下假设:哺乳动物MSC是一种紧凑的结构,部分由
然而,有序的共同相互作用序列,错误组装或突变会诱导超级序列
成分的积累,可能会带来有害的下游后果。我们将测试这个
通过(1)确定MSC第四纪结构和分量化学计量的假设,以及(2)确定
共同相互作用在MSC形成和完整性中的作用。我们预计会阐明
MSC的结构和组装将提供有关MSC中分子缺陷的机制的见解
成分可能引起严重的病理疾病,特别是使中枢神经系统的疾病使人衰弱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL L FOX其他文献
PAUL L FOX的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL L FOX', 18)}}的其他基金
The Untranslated 3'End of SARS-CoV-2 RNA as a Determinant of Obesity-Accelerated Infectivity
SARS-CoV-2 RNA 的非翻译 3 末端是肥胖加速感染的决定因素
- 批准号:
10318871 - 财政年份:2021
- 资助金额:
$ 49.72万 - 项目类别:
The Untranslated 3'End of SARS-CoV-2 RNA as a Determinant of Obesity-Accelerated Infectivity
SARS-CoV-2 RNA 的非翻译 3 末端是肥胖加速感染的决定因素
- 批准号:
10689137 - 财政年份:2021
- 资助金额:
$ 49.72万 - 项目类别:
Assay Development for Discovery of a Small Molecule Inhibitor of a Novel Metabolic Pathway that Drives Obesity
发现导致肥胖的新型代谢途径的小分子抑制剂的检测方法开发
- 批准号:
10320035 - 财政年份:2020
- 资助金额:
$ 49.72万 - 项目类别:
Assay Development for Discovery of a Small Molecule Inhibitor of a Novel Metabolic Pathway that Drives Obesity
发现导致肥胖的新型代谢途径的小分子抑制剂的检测方法开发
- 批准号:
10115720 - 财政年份:2020
- 资助金额:
$ 49.72万 - 项目类别:
Multisite phosphorylated S6K1 directs a regulatory module determining adipocyte lipid metabolism
多位点磷酸化 S6K1 指导决定脂肪细胞脂质代谢的调节模块
- 批准号:
10349543 - 财政年份:2020
- 资助金额:
$ 49.72万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional validation of sequence variants affecting neurodevelopmental and craniofacial phenotypes
影响神经发育和颅面表型的序列变异的功能验证
- 批准号:
10701310 - 财政年份:2022
- 资助金额:
$ 49.72万 - 项目类别:
The impact of genomic variation on environment-induced changes in pancreatic beta cell states
基因组变异对环境诱导的胰腺β细胞状态变化的影响
- 批准号:
10483121 - 财政年份:2021
- 资助金额:
$ 49.72万 - 项目类别:
Using hiPSCs to investigate the protective mechanisms of the ApoEch mutation
使用 hiPSC 研究 ApoEch 突变的保护机制
- 批准号:
10303436 - 财政年份:2021
- 资助金额:
$ 49.72万 - 项目类别:
The impact of genomic variation on environment-induced changes in pancreatic beta cell states
基因组变异对环境诱导的胰腺β细胞状态变化的影响
- 批准号:
10641907 - 财政年份:2021
- 资助金额:
$ 49.72万 - 项目类别:
The impact of genomic variation on environment-induced changes in pancreatic beta cell states
基因组变异对环境诱导的胰腺β细胞状态变化的影响
- 批准号:
10297450 - 财政年份:2021
- 资助金额:
$ 49.72万 - 项目类别: