Genetic and Molecular Dissection of the Neurospora Clock
脉孢菌钟的遗传和分子解剖
基本信息
- 批准号:10330086
- 负责人:
- 金额:$ 74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArchitectureBiochemistryBiologicalBiological ClocksCell divisionCellsCircadian RhythmsComplementDevelopmentDiabetes MellitusDiseaseDissectionElementsEnvironmentEukaryotaFeedbackFinancial compensationFunctional disorderGene ExpressionGeneticGenetic TranscriptionGenomeGenomicsGoalsHumanHuman bodyJet Lag SyndromeLanguageLeadLightMalignant NeoplasmsMammalian CellMammalsMental HealthMental ProcessesMental disordersMetabolic DiseasesMetabolismModelingMolecularMusNeurosporaNew TerritoriesNutritionalOrganismPhosphorylationPhysiological ProcessesPhysiologyPreventionPropertyRNA metabolismRegulationRepressionResearchRestRoleSleepStructureStudy modelsTechniquesTemperatureTimeTranslationsWorkcell behaviorcircadiancircadian pacemakercomputerized toolsfungusinformatics toolphysical conditioningresponseshift workspatiotemporaltooltranscription factorvirtual
项目摘要
Virtually all eukaryotic organisms appropriately examined have been shown to possess the capacity for
endogenous temporal control and organization known as a circadian rhythm. The cellular machinery
responsible for generating rhythms is collectively known as the biological clock. A healthy circadian clock
underlies both physical and mental health. Because of the ubiquity of its influence on human mental and
physiological processes - from circadian changes in basic human physiology to the clear involvement of
rhythms in work/rest cycles and sleep - understanding the clock is basic to prevention and treatment of many
physical and mental illnesses, from metabolic disorders to sleep/wake dysfunction and cancer.
Our research uses genetic and molecular studies of the model eukaryote Neurospora, as well as
mammalian cells in culture, to further our understanding of the organization of the circadian oscillator, a one-
step transcription-translation feedback loop whose regulatory architecture is conserved from fungi to mammals.
Planned research lies within three foci. Focus #1 builds upon our understanding of the interplay between
structure and function in core clock components. We will determine how phosphorylations and interactions
among clock components lead to repression within the feedback loop; address a controversy as to whether
negative element turnover has a role in the mammalian oscillator; probe how clock-controlled phosphorylation
guides essential interactions and activities of clock components leading to the canonical circadian property of
temperature compensation, and how modulation of RNA metabolism and gene expression contribute to
nutritional compensation. Focus #2 pioneers new territory and exploits recently developed techniques,
expanding the use of cell biological tools to complement genetics in defining the spatio-temporal dynamics of
clock components within the cell. We will show how, as well as where in the cell the clock operates. Focus #3
will build upon our strong grounding in the genetics and genomics of light-regulation, using computational and
informatic tools to define the hierarchical network of transcription factors that govern the response of
Neurospora to light and time. The aim is to provide the first concrete model for global circadian control of a
eukaryotic genome.
Our long term goals are to describe, in the language of genetics and biochemistry, the feedback cycle
comprising the circadian clock, how this cycle is synchronized with the environment, and how time information
generated by the feedback cycle is used to regulate the behavior of cells and organisms. These projects are
complementary and mutually enriching in that they rely on genetic and molecular techniques to dissect, and
ultimately to understand, the organization of cells as a function of time.
事实上,所有经过适当检查的真核生物都已被证明具有以下能力:
内源性时间控制和组织称为昼夜节律。细胞机器
负责产生节律的生物钟统称为生物钟。健康的生物钟
是身体和心理健康的基础。由于其对人类心理和心理的影响无处不在
生理过程 - 从基本人体生理学的昼夜节律变化到明显的参与
工作/休息周期和睡眠的节奏 - 了解时钟是预防和治疗许多疾病的基础
身体和精神疾病,从代谢紊乱到睡眠/觉醒功能障碍和癌症。
我们的研究使用模型真核生物脉孢菌的遗传和分子研究,以及
培养中的哺乳动物细胞,以进一步了解昼夜节律振荡器的组织,这是一种单
一步转录-翻译反馈环路,其调节结构从真菌到哺乳动物都是保守的。
计划的研究集中在三个重点领域。焦点#1建立在我们对之间相互作用的理解之上
核心时钟组件的结构和功能。我们将确定磷酸化和相互作用如何
时钟组件之间导致反馈环路内的抑制;解决是否存在争议
负元素周转在哺乳动物振荡器中发挥作用;探究时钟如何控制磷酸化
指导时钟组件的基本相互作用和活动,从而产生规范的昼夜节律特性
温度补偿,以及 RNA 代谢和基因表达的调节如何有助于
营养补偿。焦点 #2 开拓新领域并利用最近开发的技术,
扩大细胞生物学工具的使用来补充遗传学,以定义时空动态
细胞内的时钟组件。我们将展示时钟如何以及在单元中的何处运行。焦点#3
将建立在我们在光调节遗传学和基因组学方面的坚实基础上,利用计算和
信息工具来定义控制响应的转录因子的层次网络
脉孢菌对光和时间的影响。目的是为全球昼夜节律控制提供第一个具体模型
真核基因组。
我们的长期目标是用遗传学和生物化学的语言描述反馈循环
包括生物钟、该周期如何与环境同步以及时间信息如何
由反馈循环产生的反馈用于调节细胞和生物体的行为。这些项目是
互补和相互丰富,因为它们依靠遗传和分子技术来解剖,并且
最终了解细胞的组织是时间的函数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay C. Dunlap其他文献
Woody Hastings
伍迪·黑斯廷斯
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.5
- 作者:
C. Johnson;Jay C. Dunlap;T. Roenneberg - 通讯作者:
T. Roenneberg
Dinoflagellate luciferin is structurally related to chlorophyll
甲藻荧光素在结构上与叶绿素相关
- DOI:
- 发表时间:
1981 - 期刊:
- 影响因子:0
- 作者:
Jay C. Dunlap;J. W. Hastings;Osamu Shimomura - 通讯作者:
Osamu Shimomura
Jay C. Dunlap的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay C. Dunlap', 18)}}的其他基金
Genetic and Molecular Dissection of the Neurospora Clock
脉孢菌钟的遗传和分子解剖
- 批准号:
9322802 - 财政年份:2016
- 资助金额:
$ 74万 - 项目类别:
Genetic and Molecular Dissection of the Neurospora Clock
脉孢菌钟的遗传和分子解剖
- 批准号:
9068385 - 财政年份:2016
- 资助金额:
$ 74万 - 项目类别:
Genetic and Molecular Dissection of the Neurospora Clock
脉孢菌钟的遗传和分子解剖
- 批准号:
10543515 - 财政年份:2016
- 资助金额:
$ 74万 - 项目类别:
Functional Analysis and Systems Biology of Filamentous Fungi
丝状真菌的功能分析和系统生物学
- 批准号:
7814793 - 财政年份:2009
- 资助金额:
$ 74万 - 项目类别:
Functional Analysis and Systems Biology of Filamentous Fungi
丝状真菌的功能分析和系统生物学
- 批准号:
7799814 - 财政年份:2004
- 资助金额:
$ 74万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 74万 - 项目类别:
Spatiotemporal visualization of adenylyl cyclase signaling
腺苷酸环化酶信号传导的时空可视化
- 批准号:
10664707 - 财政年份:2023
- 资助金额:
$ 74万 - 项目类别:
Dissecting the molecular mechanisms of PRC2 dysregulation in cancer
剖析癌症中 PRC2 失调的分子机制
- 批准号:
10805548 - 财政年份:2023
- 资助金额:
$ 74万 - 项目类别:
Mechanisms of viral RNA maturation by co-opting cellular exonucleases
通过选择细胞核酸外切酶使病毒 RNA 成熟的机制
- 批准号:
10814079 - 财政年份:2023
- 资助金额:
$ 74万 - 项目类别: