Manipulating DNA Damage-response Signaling for the Treatment of Type 1 Diabetes

操纵 DNA 损伤反应信号传导治疗 1 型糖尿病

基本信息

  • 批准号:
    10319938
  • 负责人:
  • 金额:
    $ 44.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Abstract Type 1 diabetes (T1D) is a common autoimmune disease in children and young adults. T1D presents as acute onset hyperglycemia resulting from the immune-mediated destruction of insulin-producing pancreatic beta cells. The central pathogenic driver of T1D is the beta cell antigen-specific (ag.-sp.) T cell. There is no durable cure for T1D; the sole and costly treatment for T1D remains daily insulin replacement. Even with vigilant glucose monitoring and control, T1D patients still suffer a host of life-threatening sequalae including macro- and micro- vasculopathies, neuropathy, nephropathy, amputations, stroke, and blindness. While progress has been made in (i) producing and delivering insulin, (ii) monitoring blood glucose, (iii) identifying autoantigens, (iv) defining genetic risk factors, (v) understanding underlying immune dysfunction, and (vi) producing and harvesting pancreatic islet cells for transplant, the most intractable barrier remains our inability to remove or control islet ag.-sp. T cells, without which the promise of preventing/curing T1D will likely fail. To surmount this critical barrier, we devised the means to eliminate diabetogenic T cells from the adaptive immune repertoire. In fact, when applied to non-obese diabetic (NOD) mice with spontaneous new-onset T1D, we observe (i) a striking prolongation of the remission or “honeymoon” period, (ii) a significant reduction in beta cell-specific CD4+ and CD8+ T cells, (iii) a significant preservation of beta cells, and (iv) a highly significant reduction (78%) in the number of NOD mice that transit to overt diabetes. The premise: As T cells toggle between distinct states – naïve, activated effector, quiescent and activated memory – they exhibit ineluctable properties that we can precisely target. This is particularly true of activated effector CD4+ and CD8+ T cells (Teff). Unlike their counterparts, Teff cells divide rapidly – at a rate of once every 5-6 hours in vivo – and exhibit an intrinsic DNA damage response (DDR) that places them on the edge of apoptotic cell death. We hypothesize (i) that this unique aspect of lymphocyte biology lead to genomic stress in acutely activated lymphocytes and (ii) that manipulation of DDR signaling pathways allows for selective therapeutic targeting of pathological T cells. Consistent with these hypotheses, we find that both mouse and human Teff cells display a pronounced DDR, as evidenced by DNA damage, phospho-ser139 H2AX (γH2AX), and phosphorylation of ATM, CHK2, and p53. Moreover, we find that novel drugs that potentiate p53 (via inhibition of MDM2) or impair cell cycle checkpoints (via inhibition of CHK1/2 or WEE1) lead to the selective elimination of pathological Teff cells in vivo when given during a prescribed therapeutic window. In combination of these compounds – which we termed “p53 potentiation with checkpoint abrogation” (PPCA) – display clear therapeutic benefit, targeting pathological T cells but does not naive, regulatory, or quiescent memory T-cell pools, and has a modest nonimmune toxicity profile. These results, recently published, (PNAS 2017, PMC5474825) suggest a novel and tractable clinical strategy for a highly selective form of immune therapy that is (i) specific for both CD4+ and CD8+ auto-reactive Teff cells, (ii) minimally or non-genotoxic, and (iii) markedly better tolerated than current approaches. Importantly, this approach does not alter tissue-resident Treg cell numbers; in fact, our data suggest that PPCA resets the regulatory balance in favor of Treg control of anti-beta cell immunity. Based on our preliminary and published data, we propose three inter-related hypotheses: (i) that PPCA has a distinct mechanism of action that eliminates Teff cells while sparing Treg cells, thereby re- establishing a localized regulatory balance; (ii) that PPCA can target the control of both auto- and allogeneic T cells, thereby allowing for sustained transplantation tolerance to islets, and (iii) that PPCA can preferentially target islet ag.-sp. activated human T cells in individuals with T1D while sparing the memory compartment.
抽象的 1型糖尿病(T1D)是儿童和Younglts的常见自身免疫性疾病 作为急性发作高血糖,由免疫介导的胰岛素胰腺破坏性产生 β细胞。 治疗T1D; 监测和控制,T1D patial仍然遭受许多威胁生命的序列,包括宏观和微观 - 血管病,神经病,肾病,截肢,中风和失明。 (i)产生和输送胰岛素,(ii)监测血糖,(iii)III IIFIT AutoAntigens,(iv)定义 遗传危险因素,(v)理解潜在的Imune功能障碍,并(VI)产生和收获 用于移植的胰岛细胞,最棘手的屏障仍然是我们无法删除或控制Islett的 Ag.-Sp. T细胞,没有预防/固化T1D的承诺可能会失败。 为了克服关键障碍,我们设计了消除糖尿病性T细胞的手段 实际上,当适用于非肥胖的小鼠时,自适应免疫曲目 新发行的T1D,我们观察(i)缓解或“蜜月”时期的惊人延长,(ii)显着 β细胞特异性CD4+和CD8+ T细胞的修订,(iii)对β细胞的显着保存,以及(iv)高度 转向明显的糖尿病的NOD小鼠的数量重新修复(78%)。 前提:当T细胞在不同状态之间切换时 - 幼稚,激活效应子,静止和激活 记忆 - 它们表现出我们可以精确靶向的不陈述属性。 效应子CD4+和CD8+ T细胞(TEFF)。 在体内5-6小时,并呼出固有的DNA损伤响应(DDR),将它们置于 凋亡细胞死亡。 在急性激活的淋巴细胞和(ii)操纵DDR信号通路可以选择性的 病理T细胞的治疗靶向与假设一致,我们发现小鼠和 人类的Teff细胞显示出明显的DDR,如DNA损伤证明了磷酸ser139 H2AX(γH2AX), ATM,CHK2和p53的Phosprising。 抑制MDM2)或损害细胞周期检查点(通过抑制CHK1/2或WEE1)导致选择性 在组合窗口中,消除病理TEFF细胞 在这些化合物中 - 我们称其为“ p53用检查点废除” - 显示清晰 治疗益处,靶向病理T细胞,但幼稚,调节或静态记忆T细胞T细胞T细胞 池,并具有适度的非免疫性毒性概况。 PMC5474825)提出了一种新颖且可进行的临床策略,用于一种高度选择性形式的免疫,这是一定的 是(i)针对CD4+和CD8+自动反应性TEFF细胞(ii)(ii)最小或非生物毒性的特异性,以及(iii) 明显的耐受性比当前的方法要好得多。 Treg单元格数;实际上,我们的数据表明PPCA重置监管平衡,有利于Treg一些Treg 抗β细胞免疫。 根据我们的初步和已发布的数据,我们提出了三个相互关联的假设:(i) PPCA具有独特的作用机理,可以消除Teff细胞,同时保留Treg细胞,从而重复使用 建立局部调节性弹力; 细胞,从而允许持续的移植耐受耐受性,并且(iii)PPCA可以优先 靶标AG.-SP.在陪伴内存室时激活了T1D个体的人类T细胞。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JONATHAN David KATZ其他文献

JONATHAN David KATZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JONATHAN David KATZ', 18)}}的其他基金

Manipulating DNA Damage-response Signaling for the Treatment of Type 1 Diabetes
操纵 DNA 损伤反应信号传导治疗 1 型糖尿病
  • 批准号:
    10091310
  • 财政年份:
    2019
  • 资助金额:
    $ 44.68万
  • 项目类别:
Dissecting Dendritic Cell Function in Autoimmune Diabetes
剖析自身免疫性糖尿病中树突状细胞的功能
  • 批准号:
    7741266
  • 财政年份:
    2009
  • 资助金额:
    $ 44.68万
  • 项目类别:
Dissecting Dendritic Cell Function in Autoimmune Diabetes
剖析自身免疫性糖尿病中树突状细胞的功能
  • 批准号:
    8119440
  • 财政年份:
    2009
  • 资助金额:
    $ 44.68万
  • 项目类别:
Dissecting Dendritic Cell Function in Autoimmune Diabetes
剖析自身免疫性糖尿病中树突状细胞的功能
  • 批准号:
    8308662
  • 财政年份:
    2009
  • 资助金额:
    $ 44.68万
  • 项目类别:
Dissecting Dendritic Cell Function in Autoimmune Diabetes
剖析自身免疫性糖尿病中树突状细胞的功能
  • 批准号:
    8517102
  • 财政年份:
    2009
  • 资助金额:
    $ 44.68万
  • 项目类别:
The Insulitis Reporter Mouse
胰岛炎报告鼠
  • 批准号:
    7134619
  • 财政年份:
    2006
  • 资助金额:
    $ 44.68万
  • 项目类别:
The Insulitis Reporter Mouse
胰岛炎报告鼠
  • 批准号:
    7244000
  • 财政年份:
    2006
  • 资助金额:
    $ 44.68万
  • 项目类别:
Using Genomics to Understand Autoimmune Diabetes
利用基因组学了解自身免疫性糖尿病
  • 批准号:
    7055244
  • 财政年份:
    2002
  • 资助金额:
    $ 44.68万
  • 项目类别:
Using Genomics to Understand Autoimmune Diabetes
利用基因组学了解自身免疫性糖尿病
  • 批准号:
    6637874
  • 财政年份:
    2002
  • 资助金额:
    $ 44.68万
  • 项目类别:
Using Genomics to Understand Autoimmune Diabetes
利用基因组学了解自身免疫性糖尿病
  • 批准号:
    6889265
  • 财政年份:
    2002
  • 资助金额:
    $ 44.68万
  • 项目类别:

相似国自然基金

SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
  • 批准号:
    82300764
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
  • 批准号:
    82370084
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
  • 批准号:
    82370175
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
  • 批准号:
    82370165
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

SPORE University of Texas M. D. Anderson Cancer Center-Leukemia
SPORE 德克萨斯大学 MD 安德森癌症中心 - 白血病
  • 批准号:
    10911713
  • 财政年份:
    2023
  • 资助金额:
    $ 44.68万
  • 项目类别:
Novel risk stratification score for patients presenting with acute Cerebral Venous Sinus Thrombosis
急性脑静脉窦血栓形成患者的新风险分层评分
  • 批准号:
    10592974
  • 财政年份:
    2023
  • 资助金额:
    $ 44.68万
  • 项目类别:
Development of a Novel, Targeted Small Molecule Inhibitor of the Nucleoside Salvage Pathway to Treat Acute Disseminated Encephalomyelitis (ADEM)
开发一种新型核苷挽救途径靶向小分子抑制剂来治疗急性播散性脑脊髓炎 (ADEM)
  • 批准号:
    10755864
  • 财政年份:
    2023
  • 资助金额:
    $ 44.68万
  • 项目类别:
Project 2: Systems biology analyses of RHCMV/SIV and IL-15 mechanisms of immune programming
项目2:RHCMV/SIV和IL-15免疫编程机制的系统生物学分析
  • 批准号:
    10723640
  • 财政年份:
    2023
  • 资助金额:
    $ 44.68万
  • 项目类别:
Modulating costimulation pathways to improve follicular helper T cell and antibody responses
调节共刺激途径以改善滤泡辅助 T 细胞和抗体反应
  • 批准号:
    10571687
  • 财政年份:
    2022
  • 资助金额:
    $ 44.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了