Structural and Functional Characterization of the McrBC Restriction System
McrBC 限制系统的结构和功能表征
基本信息
- 批准号:10318156
- 负责人:
- 金额:$ 31.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureAtomic Resolution X-Ray CrystallographyBacteriaBacterial Antibiotic ResistanceBacterial GenomeBacterial InfectionsBacteriophagesBindingBiochemicalBiochemistryBiologicalBiological AssayBiological ModelsBiologyC-terminalCessation of lifeChimera organismClostridium difficileComplexConflict (Psychology)CoupledCryoelectron MicroscopyCytosineDNADNA BindingDNA Binding DomainDetectionDistantDrug DesignDrug TargetingEngineeringEnhancersEpigenetic ProcessEscherichia coliGoalsGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesHealthHelicobacter pyloriHomologous GeneHumanHydrolysisInfectionKineticsKlebsiella pneumoniaeKnowledgeLeadLyticMediatingMicrobial Antibiotic ResistanceModelingModificationMolecularMolecular ConformationMotorMulti-Drug ResistanceMutagenesisN-terminalNatureNucleotidesPathway interactionsPlayProteinsRegulationResearchResolutionRoleSideSiteStructureSubstrate SpecificitySuperbugSystemTestingTherapeutic AgentsThermococcusUnited StatesVirusX-Ray Crystallographybasecarbapenem-resistant Enterobacteriaceaeclinically relevantcombatdesignendonucleaseimprovedinhibitorinsightinterestmethicillin resistant Staphylococcus aureusnovel therapeutic interventionnovel therapeuticsnucleasepressurestoichiometrytool
项目摘要
Abstract
Modification-dependent restriction systems (MDRs) recognize and cleave modified foreign DNA. These
proteins are thought to play a role in establishing the epigenetic landscape of bacterial genomes and are
especially important in protecting against predatory bacteriophage viruses, many of which incorporate
modified bases into their DNA to evade detection by other defense systems. While MDRs can be found in
most antibiotic-resistant bacteria including methicillin-resistant Staphylococcus aureus (MRSA), Clostridium
difficile, and carbapenem-resistant enterobacteriaceae like Klebsiella pneumoniae, no eukaryotic homologs
exist, making them promising targets for drug design. Inhibiting these systems has the potential to enhance
the efficacy of phage-mediated bacterial killing, thus providing new therapeutic strategies to combat
persistent, antibiotic resistant microbial infections. It is our long-term goal to study the basic biology and
mechanisms of MDRs and use this knowledge to improve current phage therapy approaches. This proposal
examines the structure and function of the McrBC restriction system, a two-component MDR that targets
DNA containing methylated cytosines. E. coli McrB contains an N-terminal DNA binding domain and a C-
terminal AAA+ motor domain that hydrolyzes GTP and mediates nucleotide-dependent oligomerization.
McrB’s basal GTPase activity is stimulated via interaction with its partner endonuclease McrC. Biochemical
studies suggest a model for DNA cleavage in which McrB and McrC assemble together at two distant
methylated sites and translocate in a manner dependent on stimulated GTP hydrolysis. Collision of these
McrBC assemblies triggers cleavage of both DNA strands. Despite this model, the molecular and
mechanistic details underlying McrBC function remain poorly defined. In Aim 1, we will dissect the species-
specific determinants of DNA binding in different McrB homologs using X-ray crystallography and
biochemistry. We will also generate chimeras that exchange the DNA binding domains between different
McrB homologs to test the hypothesis that the core hydrolysis and cleavage machineries in McrBC are
conserved and have adapted to different evolutionary pressures via a modular design. In Aim 2, we will use
mutagenesis and kinetic assays to identify the critical catalytic components responsible for McrC-stimulated
GTPase activity. In Aim 3, we will determine the structure and architectural organization of the McrBC
restriction complex at atomic resolution by X-ray crystallography and cryo-electron microscopy. These
efforts will provide new insights into how McrBC complexes bind DNA, assemble, and hydrolyze GTP.
抽象的
识别并清除修改的外国DNA的修改依赖性限制系统(MDR)。这些
人们认为蛋白质在建立细菌基因组的表观遗传景观方面发挥作用,并且是
在防止掠食性细菌病毒中尤其重要,其中许多都合并
修改后的碱基将其他防御系统视为检测到DNA。虽然可以在
大多数抗生素耐药细菌,包括甲氧西林金黄色葡萄球菌(MRSA),梭状芽胞杆菌
艰难梭菌和耐碳青霉烯类肠杆菌科,如肺炎,无真核同源物
存在,成为药物设计的有希望的目标。抑制这些系统有可能增强
噬菌体介导的细菌杀死的有效性,从而提供了新的治疗策略来对抗
持续的,抗生素耐药的微生物感染。研究基本生物学和
MDR的机制,并使用这些知识来改善当前的噬菌体疗法。这个建议
检查MCRBC限制系统的结构和功能,这是一个针对的两个组件MDR
含有甲基化胞嘧啶的DNA。大肠杆菌MCRB包含一个N末端DNA结合结构域和c-
末端AAA+运动结构域水解GTP并介导核苷酸依赖性寡聚。
MCRB的基础GTPase活性是通过与其伴侣核酸内切酶MCRC的相互作用刺激的。生化
研究提出了一个DNA裂解的模型,其中MCRB和MCRC在两个遥远的
甲基化位点和以某种方式转运的方式取决于刺激的GTP水解。这些碰撞
MCRBC组件触发了两个DNA链的裂解。尽管这种模型,分子和
MCRBC功能基础的机械细节仍然很差。在AIM 1中,我们将剖析物种 -
使用X射线晶体学和
生物化学。我们还将生成在不同的嵌合体之间交换DNA结合域之间的嵌合体
MCRB同源物测试以下假设:MCRBC中的核心水解和裂解机械是
保守并通过模块化设计适应了不同的进化压力。在AIM 2中,我们将使用
诱变和动力学测定,以识别负责MCRC刺激的关键催化成分
GTPase活性。在AIM 3中,我们将确定MCRBC的结构和建筑组织
X射线晶体学和冷冻电子显微镜在原子分辨率下进行限制复合物。这些
努力将为MCRBC复合物如何结合DNA,组装和水解GTP提供新的见解。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The N-terminal domain of Staphylothermus marinus McrB shares structural homology with PUA-like RNA binding proteins.
- DOI:10.1016/j.jsb.2020.107572
- 发表时间:2020-07
- 期刊:
- 影响因子:3
- 作者:C. Hosford;M. Adams;Y. Niu;J. Chappie
- 通讯作者:C. Hosford;M. Adams;Y. Niu;J. Chappie
Structural asymmetry governs the assembly and GTPase activity of McrBC restriction complexes.
- DOI:10.1038/s41467-020-19735-4
- 发表时间:2020-11-20
- 期刊:
- 影响因子:16.6
- 作者:Niu Y;Suzuki H;Hosford CJ;Walz T;Chappie JS
- 通讯作者:Chappie JS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua S Chappie其他文献
Joshua S Chappie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua S Chappie', 18)}}的其他基金
Structural and Functional Characterization of the McrBC Restriction System
McrBC 限制系统的结构和功能表征
- 批准号:
10078611 - 财政年份:2018
- 资助金额:
$ 31.71万 - 项目类别:
Structure and Conformational Changes of Assembled Dynamin
组装动力的结构和构象变化
- 批准号:
7329726 - 财政年份:2007
- 资助金额:
$ 31.71万 - 项目类别:
Structure and Conformational Changes of Assembled Dynamin
组装动力的结构和构象变化
- 批准号:
7489306 - 财政年份:2007
- 资助金额:
$ 31.71万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Biochemical, structural and molecular dissection of androgen receptor transcriptional activity
雄激素受体转录活性的生化、结构和分子剖析
- 批准号:
10655002 - 财政年份:2022
- 资助金额:
$ 31.71万 - 项目类别:
Biochemical, structural and molecular dissection of androgen receptor transcriptional activity
雄激素受体转录活性的生化、结构和分子剖析
- 批准号:
10321278 - 财政年份:2021
- 资助金额:
$ 31.71万 - 项目类别: