Quantitative CEST MRI for GBM Early Response Prediction and Biopsy Guidance
用于 GBM 早期反应预测和活检指导的定量 CEST MRI
基本信息
- 批准号:10319165
- 负责人:
- 金额:$ 36.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAftercareAmidesBiopsyBiopsy SpecimenBrain NeoplasmsCaringChemicalsClinicalClinical ManagementClinical PathwaysClinical TrialsDataDiagnosticDisease ProgressionExcisionFDA approvedGlioblastomaGoalsGoldGuidelinesHumanImageImaging DeviceInvestigational TherapiesLocal TherapyLocalized Malignant NeoplasmMagnetic Resonance ImagingMalignant GliomaMalignant NeoplasmsMapsMethodologyMolecularOperative Surgical ProceduresOutputPathologicPathologyPatientsPositioning AttributePrimary Brain NeoplasmsProteinsProtocols documentationProtonsQuality of lifeRadiation therapyRecurrenceRecurrent tumorRepeat SurgerySignal TransductionSurrogate MarkersTechniquesTestingTissue SampleTreatment Protocolsbasebevacizumabchemotherapyclinical practicedeep learningdeep learning algorithmdiagnosis standardefficacy evaluationimaging modalityimprovedin vivoneuro-oncologyneuroimagingnovel diagnosticsnovel therapeuticspredicting responsequantitative imagingradiomicsrecruitresponsetemozolomidetreatment effecttreatment planningtreatment responsetumortumor diagnosistumor heterogeneity
项目摘要
ABSTRACT
Despite advances in therapy, the most aggressive form of brain tumor, glioblastoma, remains almost
universally fatal. The first-line therapy for this devastating cancer is maximum feasible surgical resection,
followed by radiotherapy with concurrent temozolomide chemotherapy (CRT). It is encouraging that there are
multiple second-line therapies in clinical trials that could improve life quality or prolong survival, such as anti-
angiogenic therapy (AAT). In this scenario, the accurate determination of whether a patient is a responder or a
non-responder at an early stage following CRT has become a significant factor in clinical practice. However,
the limitations in neuroimaging complicate the clinical management of patients and impede efficient testing of
new therapeutics. Even with the improvements in advanced imaging modalities, distinguishing true progression
vs. pseudoprogression (induced by CRT), or response vs. pseudoresponse (induced by AAT) remain two of
the most formidable diagnostic dilemmas. Hence, the current gold standard for diagnosis and local therapy
planning is still based on pathologic appraisal of tissue samples. However, even this yields variable results due
to the intra-tumoral heterogeneity of treatment response. Therefore, reliable imaging tools, capable of early
prediction of the tumor response to clinical therapies, are urgently needed. Amide proton transfer-weighted
(APTw) imaging is a chemical exchange saturation transfer (CEST)-based molecular MRI technique, which
has been demonstrated to add important value to the clinical MRI assessment in neuro-oncology. However,
most currently used imaging protocols are essentially semi-quantitative, and the images obtained are often
called APTw images because of other contributions. Notably, it has been shown that quantitative CEST-MRI is
able to achieve more pure and higher APT signals in patients with brain tumors. On the other hand, deep-
learning is a state-of-the-art imaging analysis technique that provides exciting solutions with minimum human
input. In particular, the saliency maps derived act as a localizer for class-discriminative regions, and may have
great potential to guide biopsies and local treatment regimens. The goals of this proposal are to demonstrate
the potential of quantitative CEST-MRI to resolve two formidable diagnostic dilemmas for GBM patients and to
develop an automated deep-learning framework for post-treatment surveillance and biopsy guidance. This
application has three specific aims: (1) Implement and optimize the quantitative CEST-MRI technique and
quantify its accuracy in predicting early response to CRT and survival; (2) Determine the capability of
quantitative CEST-MRI to assess the response to bevacizumab; and (3) Develop a deep-learning pipeline that
includes structural and CEST images for responsiveness differentiation and stereotactic biopsy guidance. If
successful, our results—and particularly the deep-learning platform established—will be readily available to
accurately identify early response and guide stereotactic biopsy, thus changing the clinical pathway.
抽象的
尽管在治疗方面取得了进步,但最具侵略性的脑肿瘤形式,胶质母细胞瘤几乎保持不变
普遍致命。
然后进行放射疗法,并进行替莫酚化疗(CRT)。
临床试验中的多种二线疗法可以提高寿命质量或延长生存率,例如
血管生成疗法(AAT)。
但是,在CRT之后的早期阶段,非响应者已成为临床实践的重要因素。
神经影像学的局限性使患者的临床管理复杂化,并妨碍对
新的治疗方法。
vs.伪雌性(由CRT诱导)或响应与伪行(由AAT诱导)仍然存在
最强大的诊断困境。
计划仍基于组织样本的病理评估。
因此,治疗反应的肿瘤内异质性。
迫切需要对肿瘤对临床疗法的反应进行预测
(APTW)成像是一种化学交换饱和转移(CEST)的分子MRI技术,该技术
已被证明可以为神经Ncology的临床MRI评估增加重要价值。
当前使用的大多数成像协议本质上是半定量的,并且获得的图像通常是
称为aptw图像,因为很有贡献。
另一方面,能够在患有脑肿瘤的患者中获得更多纯净和更高的信号。
学习是一种状态成像分析技术,可提供最少人类的令人兴奋的解决方案
尤其是。
指导活检和局部治疗方案的巨大潜力。
定量CEST-MRI解决GBM患者的两个强大诊断困境的潜力和
开发一个自动学习框架,以进行治疗后的监视和活检指导
应用特定的目的:(1)限时使用定量的CEST-MRI技术和
量化其预测对CRT和生存的早期反应的准确性;(2)
定量CEST-MRI评估对贝伐单抗的反应;
包括响应分化和立体定向活检指导的结构和CEST图像
成功,我们的结果,尤其是建立的深度学习平台 - 也将很容易获得
准确地确定早期反应并引导立体定向活检,从而改变临床途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shanshan Jiang其他文献
Shanshan Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shanshan Jiang', 18)}}的其他基金
Quantitative CEST MRI for GBM Early Response Prediction and Biopsy Guidance
用于 GBM 早期反应预测和活检指导的定量 CEST MRI
- 批准号:
10531904 - 财政年份:2020
- 资助金额:
$ 36.7万 - 项目类别:
相似海外基金
Quantitative CEST MRI for GBM Early Response Prediction and Biopsy Guidance
用于 GBM 早期反应预测和活检指导的定量 CEST MRI
- 批准号:
10531904 - 财政年份:2020
- 资助金额:
$ 36.7万 - 项目类别:
Therapeutic Strategies for Neonatal Hypoxic-Ischemiic Encephalopathy
新生儿缺氧缺血性脑病的治疗策略
- 批准号:
9029894 - 财政年份:2008
- 资助金额:
$ 36.7万 - 项目类别:
Therapeutic Strategies for Neonatal Hypoxic-Ischemiic Encephalopathy
新生儿缺氧缺血性脑病的治疗策略
- 批准号:
9148180 - 财政年份:2008
- 资助金额:
$ 36.7万 - 项目类别:
Therapeutic Strategies for Neonatal Hypoxic-Ischemiic Encephalopathy
新生儿缺氧缺血性脑病的治疗策略
- 批准号:
9278273 - 财政年份:2008
- 资助金额:
$ 36.7万 - 项目类别: