Mechanisms of Clostridioides difficile germinant and co-germinant sensing
艰难梭菌萌发和共萌发传感机制
基本信息
- 批准号:10320344
- 负责人:
- 金额:$ 4.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Academic skillsAddressAdoptedAffinityAmino AcidsAnaerobic BacteriaBacteriaBacterial SporesBehaviorBile AcidsBindingBiochemicalBiochemistryBiologicalBiological AssayBiologyCalciumCalorimetryCessation of lifeChemicalsChemistryClostridium difficileCollaborationsCommunitiesCritical ThinkingCrystallographyDataDeuteriumDevelopmentDiseaseDrug TargetingEducational process of instructingExhibitsFosteringFutureGeneticGenetic ScreeningGenetic studyGerminationGoalsHealthcare SystemsHydrogenImmunoprecipitationInfectionLabelLearningMass Spectrum AnalysisMeasuresMentorshipMethodsModelingMolecularMolecular ConformationMolecular Sieve ChromatographyNutritionalPathogenesisPathway interactionsPositioning AttributeProcessProteinsRecurrenceReproduction sporesResearch PersonnelSignal TransductionSpecificityStructureTaurine CholateTechnical ExpertiseTestingTitrationsTrainingUltraviolet RaysUniversitiesVermontWorkWritingX-Ray Crystallographybile acid binding proteinscareerchenodeoxycholatecostcrosslinkexperimental studyfaculty researchgastrointestinal infectiongenetic analysisinhibitor/antagonistinnovationinsightlight scatteringmolecular massnovelnovel strategiespathogenpreventreceptorresponsesensorskillssmall moleculestoichiometrysugar
项目摘要
PROJECT SUMMARY / ABSTRACT
Germination is essential for the lifecycle of spore-forming obligate anaerobes like the nosocomial pathogen,
Clostridioides difficile. Despite the importance of this process, the molecular mechanisms by which bacterial
spores physically detect the small molecule germinants that trigger germination remain poorly understood.
Furthermore, the mechanism by which C. difficile spores sense and transduce germinant signals is unique
among spore-forming bacteria because (i) C. difficile spores respond to bile acid germinants rather than the
canonical nutritional germinants (e.g. sugars) used by all spore-formers studied to date, and (ii) C. difficile lacks
the transmembrane germinant receptors encoded by almost all other spore-formers. Instead, C. difficile is
thought to use a soluble protein, the CspC pseudoprotease, to detect bile acids and trigger a proteolytic signaling
cascade that leads to germination.
We recently solved the structure of this putative germinant receptor. Our subsequent structure-function
analyses challenge the prevailing model that CspC directly senses bile acid germinants and surprisingly revealed
that CspC not only integrates signals from bile acid germinants but also from amino acid and calcium co-
germinants. Because of these unexpected findings, the proposed studies will address questions such as (i) what
are the direct sensors of bile acid germinants in C. difficile spores? and (ii) How does CspC transduce germinant
and co-germinant signals? (Co-)germinant sensing remains poorly defined, so our analyses of CspC and
identification of bile acid-binding proteins will provide molecular insight into the mechanisms by which C. difficile
spores germinate. Furthermore, since spore germination is essential for C. difficile to initiate infection, our studies
may help identify novel strategies for preventing the ~224,000 C. difficile infections per year in the US alone.
In addition to advancing our understanding of C. difficile germination, this project will provide me with
comprehensive academic and career training. My sponsor, Dr. Aimee Shen, is committed to teaching me the
technical skills to complete the proposed experiments and the academic skills to effectively share my work with
the scientific community. As outlined in my training plan, we have set specific goals for training in writing,
presentation, teaching, and mentorship that are critical for me to obtain my overall career goal of holding an
academic research faculty position. Dr. Shen and I have assembled a group of collaborators with expertise in
biochemistry, crystallography, and chemical biology, and I will seize the opportunity to learn numerous
experimental approaches from them. The diverse mentorship I will receive from Dr. Shen and my collaborators
will ultimately foster my critical thinking skills, technical capabilities, and development into an independent
researcher.
项目概要/摘要
发芽对于形成孢子的专性厌氧菌(如医院病原体)的生命周期至关重要,
艰难梭菌。尽管这个过程很重要,但细菌的分子机制
孢子物理检测触发萌发的小分子萌发剂仍然知之甚少。
此外,艰难梭菌孢子感知和转导萌发信号的机制是独特的
在孢子形成细菌中,因为 (i) 艰难梭菌孢子对胆汁酸萌发剂而不是胆汁酸萌发剂做出反应
迄今为止研究的所有孢子形成体所使用的规范营养萌发剂(例如糖),以及 (ii) 艰难梭菌缺乏
由几乎所有其他孢子形成体编码的跨膜萌发受体。相反,艰难梭菌是
人们认为使用可溶性蛋白质 CspC 假蛋白酶来检测胆汁酸并触发蛋白水解信号
导致发芽的级联。
我们最近解决了这种假定的萌芽受体的结构。我们后续的结构-功能
分析挑战了 CspC 直接感知胆汁酸起始物的流行模型,并令人惊讶地发现
CspC 不仅整合来自胆汁酸起始物的信号,还整合来自氨基酸和钙共体的信号
萌芽。由于这些意外的发现,拟议的研究将解决以下问题:(i)
艰难梭菌孢子中的胆汁酸萌芽体是直接传感器吗? (ii) CspC 如何转导萌芽
和共同萌芽信号? (共)萌发传感仍然没有明确定义,因此我们对 CspC 和
胆汁酸结合蛋白的鉴定将为艰难梭菌的机制提供分子洞察
孢子发芽。此外,由于孢子萌发对于艰难梭菌发起感染至关重要,我们的研究
仅在美国,可能有助于确定每年预防约 224,000 例艰难梭菌感染的新策略。
除了加深我们对艰难梭菌萌发的理解之外,这个项目还将为我提供
全面的学术和职业培训。我的赞助人 Aimee Shen 博士致力于教我
完成拟议实验的技术技能和有效分享我的工作的学术技能
科学界。正如我的培训计划中所述,我们以书面形式设定了具体的培训目标,
演讲、教学和指导对于我实现持有学位的总体职业目标至关重要
学术研究教职。沉博士和我组建了一群具有以下专业知识的合作者
生物化学、晶体学、化学生物学,我会抓住机会学习很多
他们的实验方法。我将从沉博士和我的合作者那里得到多样化的指导
最终将培养我的批判性思维能力、技术能力,并发展成为一个独立的人
研究员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Rachel Forster其他文献
Emily Rachel Forster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Rachel Forster', 18)}}的其他基金
Mechanisms of Clostridioides difficile germinant and co-germinant sensing
艰难梭菌萌发和共萌发传感机制
- 批准号:
10462682 - 财政年份:2020
- 资助金额:
$ 4.18万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
HIV Clinic-based Screening for Geriatric Syndromes in Older Adults with HIV
基于艾滋病毒临床的艾滋病毒感染者老年综合症筛查
- 批准号:
10761940 - 财政年份:2023
- 资助金额:
$ 4.18万 - 项目类别:
Preventing School Exclusion and Opioid Misuse: Effectiveness of the Inclusive Skill-building Learning Approach (ISLA)
防止学校排斥和阿片类药物滥用:包容性技能建设学习方法 (ISLA) 的有效性
- 批准号:
10775597 - 财政年份:2023
- 资助金额:
$ 4.18万 - 项目类别:
Addressing Key Social-Structural Risk Factors for Racial Disparities in Maternal Morbidity in Southeastern Wisconsin (ASCEND WI)
解决威斯康星州东南部孕产妇发病率种族差异的关键社会结构风险因素 (ASCEND WI)
- 批准号:
10756016 - 财政年份:2023
- 资助金额:
$ 4.18万 - 项目类别:
Environmental Health Sciences Research for Indigenous Scholar Engagement (EHS-RISE)
土著学者参与的环境健康科学研究(EHS-RISE)
- 批准号:
10590309 - 财政年份:2023
- 资助金额:
$ 4.18万 - 项目类别:
Decoding Structural Determinants of Efficacy and Specificity in a GPCR Subfamily
解码 GPCR 亚家族中功效和特异性的结构决定因素
- 批准号:
10572310 - 财政年份:2023
- 资助金额:
$ 4.18万 - 项目类别: