Chromatin Organization Regulates Osteogenesis
染色质组织调节成骨
基本信息
- 批准号:10316201
- 负责人:
- 金额:$ 50.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-06 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAcuteAffectAgingAlkaline PhosphataseBindingBiological AssayBone DevelopmentBone RegenerationBone SurfaceBone TissueCCCTC-binding factorCRISPR/Cas technologyCell LineageCellsChromatinChromatin StructureChromosomesClustered Regularly Interspaced Short Palindromic RepeatsCompetenceComplementComplexControl GroupsData SetDevelopmentEnhancersEpigenetic ProcessFemaleFutureGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenomeGenomic SegmentGenomicsHi-CHigher Order Chromatin StructureHistologyImpairmentImplantInjectionsKnowledgeLinkMature BoneMediatingMesenchymal Stem CellsMicroRNAsModelingModificationMusOsteoblastsOsteogenesisOutcomePhenotypePublishingRegulatory ElementResearchResolutionRoleSelection CriteriaSupporting CellTestingTherapeuticTimeTissuesTranscriptional RegulationTransplantationUndifferentiatedbasebonebone losschromosomal locationclinically relevantcohortdifferential expressionfunctional genomicsgene networkhistone modificationin vivoin vivo evaluationmalemouse modelnovelosteoblast differentiationosteogenicpreventive interventionprogramsprotein complexskeletal disorderstem cellssubcutaneoustranscription factortranscriptome sequencingtranslational applicationstreatment strategy
项目摘要
SUMMARY
This new R01 builds on discoveries during the R37 period (2008-2018) that established epigenetic mechanisms
(miRNAs, histone modifications) regulating osteoblast differentiation. We characterized for the first time a
“signature” of specific histone modifications that are associated with dynamic changes in gene expression during
the temporal progression of osteogenesis. These histone modifications also predicted “enhancers”, which are
critical cis-regulatory elements that contribute to local gene expression. We now propose to examine the recently
recognized “super enhancer” domains (SEDs) that include regulatory elements for multiple transcription factors
that have emerged as key regulators of cell phenotypes. SEDs function in chromatin organization via long range
intra- and inter-chromosomal interactions that coordinate control of gene cohorts responsible for lineage
specification and distinct cell identity. Our preliminary studies have identified a subset of SEDs that we now
propose are putative “bone-essential super-enhancers” and candidates for the important decision stage of
commitment to osteogenesis from MSCs. We hypothesize that super-enhancer domains are differentially
activated from the undifferentiated MSC to the osteoblast commitment stage, and function to establish the
osteogenic phenotype by coordinately regulating gene networks and contributing to higher order chromatin
organization that supports cell identity. Our studies will in: Aim1- analyze the functional effects of prioritized SEDs
we have identified related to osteoblastogenesis and mature bone activities through directed inhibition and
activation of SEDs using CRISPR/Cas9 in MSCs; Aim 2- determine the chromosomal domains that interact
with SEDs to control multiple genes and networks that commit MSCs to the osteoblast phenotype through
chromatin organization; and Aim 3- demonstrate in mouse models that using CRISPR activated SEDs in MSCs
will stimulate bone formation.
Impact: These studies pioneer a new level of gene regulation for MSC lineage commitment to osteogenesis,
based on an emerging understanding of SED functions in other tissues but have been minimally studied in bone.
By characterizing SED mechanisms related to chromatin organization and stabilization in MSCs, we will discover
novel mechanisms of multi-dimensional coordinate control of transcriptional hubs and protein complexes within
an SED that is responsible for establishing commitment to the osteoblast phenotype. Importantly, knowledge of
the chromatin organization that stabilizes the osteogenic phenotype impacts on future novel treatment strategies
for skeletal disorders.
概括
这种新的R01建立在R37时期(2008-2018)的发现上,该发现建立了表观遗传机制
(miRNA,组蛋白修饰)调节成骨细胞分化。我们首次表征了
特定组蛋白修饰的“签名”与基因表达的动态变化相关的特定组蛋白修饰。
成骨的暂时进展。这些组蛋白修饰还预测了“增强子”,这是
关键的顺式调节元素有助于局部基因表达。我们现在建议检查最近
公认的“超级增强子”域(SED),其中包括多个转录因子的调节元素
已成为细胞表型的关键调节剂。 SEDS通过远距离的染色质组织功能
染色体内和染色体间相互作用,这些相互作用协调负责谱系的基因组的控制
规范和不同的细胞身份。我们的初步研究已经确定了我们现在的SED子集
提案是推定的“骨头上的超级增强剂”和候选人的重要决策阶段
对MSC的成骨作用的承诺。我们假设超级增强剂域是差异的
从未分化的MSC激活到成骨细胞承诺阶段,并建立功能
通过协调调节基因网络并有助于高阶染色质,成骨表型
支持细胞身份的组织。我们的研究将在:AIM1-分析优先SED的功能效应
我们已经通过定向抑制和
在MSC中使用CRISPR/CAS9激活SED; AIM 2确定相互作用的染色体结构域
使用SED控制多个基因和网络,这些基因和网络通过
染色质组织; AIM 3-在使用MSC中使用CRISPR激活的SED的鼠标模型中进行了3-演示
将刺激骨形成。
影响:这些研究先驱,一种新的基因调节水平,用于MSC谱系对成骨的承诺,
基于对SED功能的新兴理解,但在骨骼中的研究很少。
通过表征与染色质组织和MSC中稳定相关的SED机制,我们将发现
转录中心和蛋白质复合物多维坐标控制的新机制
负责建立对成骨细胞表型的承诺的SED。重要的是,知识
稳定成骨表型的染色质组织会影响未来的新型治疗策略
用于骨骼疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane B. Lian其他文献
TRAP-1, the mitochondrial Hsp90
- DOI:
10.1016/j.bbamcr.2011.08.007 - 发表时间:
2012-03-01 - 期刊:
- 影响因子:
- 作者:
Dario C. Altieri;Gary S. Stein;Jane B. Lian;Lucia R. Languino - 通讯作者:
Lucia R. Languino
Gamma-carboxyglutamate excretion and calcinosis in juvenile dermatomyositis.
幼年皮肌炎中的γ-羧基谷氨酸排泄和钙质沉着。
- DOI:
10.1002/art.1780250910 - 发表时间:
1982 - 期刊:
- 影响因子:0
- 作者:
Jane B. Lian;Jane B. Lian;Lauren M. Pachman;C. Gundberg;Raymond E. H. Partridge;M. Maryjowski - 通讯作者:
M. Maryjowski
LB-036 - Cbfβ prevents articular cartilage degeneration
- DOI:
10.1016/j.joca.2024.03.038 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Xiangguo Che;Xian Jin;Dong-Kyo Lee;Hee-June Kim;Hee-Soo Kyung;Hyun-Ju Kim;Jane B. Lian;Janet L. Stein;Gary S. Stein;Je-Yong Choi - 通讯作者:
Je-Yong Choi
Jane B. Lian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jane B. Lian', 18)}}的其他基金
Project 3: MANCR Mediates Epigenetic Mechanisms for Survival of Advanced Breast Cancer
项目 3:MANCR 介导晚期乳腺癌生存的表观遗传机制
- 批准号:
10380073 - 财政年份:2021
- 资助金额:
$ 50.13万 - 项目类别:
Project 3: MANCR Mediates Epigenetic Mechanisms for Survival of Advanced Breast Cancer
项目 3:MANCR 介导晚期乳腺癌生存的表观遗传机制
- 批准号:
10608059 - 财政年份:2021
- 资助金额:
$ 50.13万 - 项目类别:
Runx2 Organizes Transcriptional Complexes in Nuclear Microenvironments to Support
Runx2 在核微环境中组织转录复合物以支持
- 批准号:
8601049 - 财政年份:2013
- 资助金额:
$ 50.13万 - 项目类别:
Runx2 Organizes Transcriptional Complexes in Nuclear Microenvironments to Support
Runx2 在核微环境中组织转录复合物以支持
- 批准号:
8052327 - 财政年份:2011
- 资助金额:
$ 50.13万 - 项目类别:
RUNX@ Subnuclear Targeting Integrates Signaling Pathways for Bone Formation
RUNX@ 亚核靶向整合骨形成信号通路
- 批准号:
8289359 - 财政年份:2011
- 资助金额:
$ 50.13万 - 项目类别:
相似国自然基金
组蛋白乙酰化修饰介导Hint2调控NETosis对急性肝衰竭的影响及机制研究
- 批准号:82270627
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
组蛋白乙酰化修饰介导Hint2调控NETosis对急性肝衰竭的影响及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于非组蛋白乙酰化修饰探讨GSK3β/ULK1通路调控线粒体自噬对急性肝衰竭能量代谢的影响
- 批准号:82070609
- 批准年份:2020
- 资助金额:54 万元
- 项目类别:面上项目
组蛋白去乙酰化酶介导的自噬-NLRP3炎症小体轴对急性肝衰竭细胞焦亡途径的影响
- 批准号:81870413
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
自噬应激对脊髓急性损伤和修复的影响及其调控机制的研究
- 批准号:81301059
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting HNF4-induced thrombo-inflammation in Chagas disease
针对恰加斯病中 HNF4 诱导的血栓炎症
- 批准号:
10727268 - 财政年份:2023
- 资助金额:
$ 50.13万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 50.13万 - 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 50.13万 - 项目类别:
Opioid-Induced Epigenetic Mechanisms in Glaucoma
阿片类药物诱导的青光眼表观遗传机制
- 批准号:
10563745 - 财政年份:2023
- 资助金额:
$ 50.13万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10917559 - 财政年份:2023
- 资助金额:
$ 50.13万 - 项目类别: