Cellular Mechanisms of Convergence Among Autism Spectrum Disorder Genes
自闭症谱系障碍基因趋同的细胞机制
基本信息
- 批准号:10313952
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2024-09-29
- 项目状态:已结题
- 来源:
- 关键词:ANK2 geneAction PotentialsAffectAnkyrinsApicalAreaAxonBrainCalciumCalcium ChannelCandidate Disease GeneCell physiologyCellsClathrinCognitiveCommunicationDataDendritesDendritic SpinesElectrophysiology (science)EndocytosisExcitatory SynapseFMR1FamilyFunctional disorderGene ExpressionGeneral PopulationGenesGeneticGlutamatesGoalsImageImpairmentIon ChannelLeadLifeLinkMeasuresMediatingMembraneModelingMusNeurodevelopmental DisorderNeuronsPatternPhenocopyPhenotypePhysiologicalPrefrontal CortexPyramidal CellsRanvier&aposs NodesScaffolding ProteinSiteSodiumSodium ChannelSynapsesSynaptic plasticityTestingTranslatingWorkautism spectrum disorderbasebrain circuitrydetectoreffective therapygene discoveryhigh riskhippocampal pyramidal neuroninsightmouse modelnew therapeutic targetrisk variantscaffoldsocialsodium-binding benzofuran isophthalatesynaptic functiontreatment strategytwo-photonvoltage
项目摘要
ABSTRACT
Recent progress in genetics has uncovered over 100 genes associated with autism spectrum disorder (ASD).
Identifying points of convergence among ASD candidate genes is the next critical step to translate gene
discoveries to pathophysiological changes in brain circuitry. One central locus at which ASD risk genes converge
are prefrontal cortex (PFC) layer 5 pyramidal neurons. These neurons have specialized dendritic arbors thought
to act as coincidence detectors between local inputs on their basal arbors and long-range modulatory inputs on
their apical tufts. Thus, pyramidal cell dendrites may be a major locus for synaptic integration. Abnormal dendritic
excitability is hypothesized to contribute to the social, cognitive, and communication deficits typically observed
in ASD, but how these deficits manifest at the cellular level remains unclear. Here, I propose that deficits in
dendritic integration and dendritic excitability are a core cellular phenotype of ASD. Specifically, I will test the
central hypothesis that impaired dendritic excitability is a point of convergence across multiple high-confidence
ASD risk genes. Our lab has recently identified dendritic impairments in mice haploinsufficient for a top ASD risk
gene, Scn2a. Scn2a encodes the voltage-gated sodium channel NaV1.2, which is critical for the backpropagation
of action potentials to apical dendrites to regulate synaptic integration, stability, and plasticity. Interestingly,
several high-risk ASD genes may interact with Scn2a—either through membrane scaffolding or gene
expression—in ways that could also result in impaired dendritic excitability. Ankyrins, for example, are a family
of scaffolding proteins known to localize sodium channels to the axon initial segment and nodes of Ranvier, sites
of action potential initiation and propagation. Here, we propose that ankyrin-B, the product of the ASD-associated
gene ANK2, is the primary ankyrin that localizes Nav1.2 in dendrites. Consistent with a loss of dendritic NaVs,
my preliminary data indicate that Ank2+/- and Scn2a+/- pyramidal cells have identical deficits in excitatory synapse
function. Upstream of this direct interaction, the ASD risk genes Fmr1 and Tbr1 have been shown to regulate
either Scn2a or AnkB expression. As a result, we expect dendritic excitability to be impaired when any of these
genes are affected. We will test our hypothesis by pursing three specific aims: Aim 1: To evaluate the effects of
Ank2 loss on dendritic sodium channel function and excitability. Aim 2: To investigate convergence of impaired
dendritic excitability in mouse models of ASD risk genes. Aim 3: To determine the effects of Scn2a
haploinsufficiency on basal versus apical dendritic excitability. This work is expected to reveal whether dendritic
excitability is indeed a point of convergence across high-risk ASD genes, and to further determine precisely what
aspects of dendritic excitability are most affected in these cases. Our results will have a positive impact because
this work will reveal mechanisms that contribute to altered dendritic excitability, which, in turn, may give us
greater insight to the pathophysiology of ASD.
抽象的
仿制药的最新进展发现了与自闭症谱系障碍(ASD)相关的100多种基因。
识别ASD候选基因之间的收敛点是翻译基因的下一个关键步骤
发现大脑回路的病理生理变化。 ASD风险基因收敛的一个中心基因座
是前额叶皮层(PFC)第5层锥体神经元。这些神经元有专门的树突状乔木认为
充当本地输入基本乔木和远程调节输入之间的巧合探测器
他们的顶簇。这,锥体细胞树突可能是突触整合的主要基因座。异常树突状
假设兴奋性有助于社会,认知和交流缺陷,通常会观察到
在ASD中,但是这些缺陷如何在细胞水平上表现出来尚不清楚。在这里,我建议缺乏
树突状融合和树突状令人兴奋是ASD的核心细胞表型。具体来说,我将测试
中心假设,即树突状令人兴奋的损害是跨多个高信任的融合点
ASD风险基因。我们的实验室最近确定了小鼠的树突损伤单倍损害,以达到最高的ASD风险
Gene,SCN2A。 SCN2A编码电压门控钠通道NAV1.2,这对于反向传播至关重要
顶端树突的作用潜力调节合成整合,稳定性和可塑性。有趣的是,
几种高风险的ASD基因可能与SCN2A相互作用 - 通过膜脚手架或基因
表达 - 也可能导致树突状兴奋性受损的方式。例如,Ankyrins是一个家庭
已知将钠通道定位于轴突初始段和兰维尔节点的脚手架蛋白
行动潜在的主动性和传播。在这里,我们建议Ankyrin-B,是ASD相关的乘积
基因ANK2是将NAV1.2定位在树突中的主要a金林。与丧失树突状导航一致
我的初步数据表明ANK2 +/-和SCN2A +/-锥体细胞在兴奋性突触中具有相同的定义
功能。在这种直接相互作用的上游,ASD风险基因FMR1和TBR1已显示用于调节
SCN2A或ANKB表达式。结果,我们希望在任何一个中都会损害树突状的兴奋性
基因受到影响。我们将通过追求三个具体目标来检验我们的假设:目标1:评估
树突状钠通道功能和兴奋性上的ANK2损失。目标2:调查受损的收敛性
ASD风险基因的小鼠模型中的树突刺激性。目标3:确定SCN2A的影响
基本与顶端树突状兴奋的单倍不足。预计这项工作将揭示是否树突状
兴奋性确实是跨高危ASD基因收敛的点,并进一步确定什么
在这些情况下,树突状兴奋的各个方面受到最大的影响。我们的结果将产生积极的影响,因为
这项工作将揭示导致树突状兴奋性改变的机制,反过来可能给我们
对ASD的病理生理学的洞察力更大。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew D Nelson其他文献
Andrew D Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew D Nelson', 18)}}的其他基金
Cellular Mechanisms of Convergence Among Autism Spectrum Disorder Genes
自闭症谱系障碍基因趋同的细胞机制
- 批准号:
10687877 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Cellular Mechanisms of Convergence Among Autism Spectrum Disorder Genes
自闭症谱系障碍基因趋同的细胞机制
- 批准号:
10491713 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
相似国自然基金
泛素E3连接酶接头蛋白SPOP控制离子通道KCNQ1蛋白稳定性影响心肌细胞复极化的机制研究
- 批准号:81800301
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
磁场对神经元动作电位产生与传导的影响
- 批准号:51507046
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
钙钟和膜钟对窦房结自律性的影响及与房性心律失常相互作用的机制
- 批准号:81271661
- 批准年份:2012
- 资助金额:69.0 万元
- 项目类别:面上项目
心脏再同步化治疗对失同步化心衰左心室电生理重构的影响
- 批准号:81100126
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
L型钙离子通道的不同亚型在生理状态和尼古丁成瘾状态下对于腹侧被盖区多巴胺细胞放电行为的影响及其机制
- 批准号:31000483
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the synaptic interactome of the high risk autism gene ANK2
阐明高风险自闭症基因 ANK2 的突触相互作用组
- 批准号:
10391766 - 财政年份:2022
- 资助金额:
$ 6.6万 - 项目类别:
Convergent mechanisms for neurodevelopmental disorder genes
神经发育障碍基因的趋同机制
- 批准号:
10405021 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Convergent mechanisms for neurodevelopmental disorder genes
神经发育障碍基因的趋同机制
- 批准号:
10275804 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Cellular Mechanisms of Convergence Among Autism Spectrum Disorder Genes
自闭症谱系障碍基因趋同的细胞机制
- 批准号:
10687877 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Convergent mechanisms for neurodevelopmental disorder genes
神经发育障碍基因的趋同机制
- 批准号:
10569594 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别: