Mechanism of Flavivirus RNA Capping

黄病毒RNA加帽机制

基本信息

  • 批准号:
    10308030
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Approximately 2/3rd of the world population is at risk of infection by at least one of the 35 insect-borne flaviviruses known to cause disease in humans. There are currently few vaccines and no therapeutics available to treat patients infected by flaviviruses such as Dengue, Zika, and West Nile viruses despite the severe morbidity and mortality they cause globally each year. The development of improved vaccines and therapeutics to prevent and treat flavivirus infections requires improved knowledge of the molecular mechanisms these serious human pathogens use to replicate their genomes. RNA capping of flavivirus genomes has received increasing attention over the last decade as an antiviral drug target due to its critical roles in maintaining viral RNA stability, controlling viral protein translation, and innate immune evasion. There is, however, not much known about how flavivirus RNAs are capped during infection. Therefore, this proposal will define how flaviviruses cap their RNA genomes during infection and evaluate how capping affects innate immune evasion. 1) The NS5 RNA guanylyltransferase is a novel flavivirus enzyme with no structural or sequence similarities to any other known nucleotidyltransferase enzyme. It is currently unknown how this important viral enzyme functions, which is a critical gap in our understanding of flavivirus RNA replication. We are using a combination mutagenesis and viral replication experiments to define the active site of the flavivirus NS5 guanylyltransferase, providing the first in-depth characterization of this unique viral replication enzyme. 2) The 5' untranslated region (UTR) of the flavivirus genome contains conserved sequence and structural elements known to be involved in RNA replication, but their role in RNA capping has never been assessed. We will use a series of mutated 5' UTR RNAs to test the specificity of NS5-mediated RNA capping to define how 5' UTR terminal sequences and the stem-loop A structure affect binding and capping efficiency. 3) Degradation of flavivirus genomes by the cellular RNA decay pathway results in the inhibition of RNA decay and RNAi pathways, altering the immune response to infection. We wish to test the intriguing hypothesis that viral capping efficiency may be strategically regulated by viruses to produce non-coding RNAs that alter infection dynamics. Interestingly, we have recently found that uncapped viral RNAs are incorporated into virus particles and may comprise up to a third of viral RNAs in an infected cell. This surprisingly high level of uncapped RNA is likely processed by RNA decay factors and leads to high levels of a small sfRNA which has been shown previously to antagonize RNAi and interferon responses (among other things). We will examine, therefore, how NS5 capping efficiency affects viral RNA production, the fate of uncapped viral RNAs in cells, and how the products of these uncapped RNAs influence the dynamics of a flavivirus infection. Overall, this project will significantly advance our understanding of flavivirus replication mechanisms that we can exploit for antiviral and vaccine development, and will provide critical new information about how flaviviruses cause disease.
大约2/3的世界人口有35种昆虫传播的人有感染的风险 已知会引起人类疾病的黄病毒。目前几乎没有疫苗,没有可用的治疗方法 治疗受到黄病毒感染的患者,例如登革热,寨卡病毒和西尼罗河病毒 它们每年在全球造成的发病率和死亡率。改进的疫苗和治疗剂的开发 为了预防和治疗黄病毒感染需要提高对分子机制的了解 严重的人类病原体用于复制其基因组。黄病毒基因组的RNA上限已接收 由于其在维持病毒方面的关键作用,在过去十年中,在过去十年中,人们的注意力越来越多 RNA稳定性,控制病毒蛋白翻译和先天免疫逃避。但是,没有什么 知道在感染过程中如何限制黄素RNA。因此,该建议将定义如何 黄病毒在感染过程中限制其RNA基因组,并评估封盖如何影响先天免疫逃避。 1)NS5 RNA Guanylyllansferase是一种新型黄病毒酶,没有结构或序列相似性 任何其他已知的核苷转移酶。目前尚不清楚这种重要的病毒酶如何 功能,这是我们对黄病毒RNA复制的理解的关键差距。我们正在使用 组合诱变和病毒复制实验,以定义黄素NS5的活性位点 Guanylyltransferase,提供了这种独特的病毒复制酶的第一个深入特征。 2)黄病毒基因组的5'未翻译区(UTR)包含保守的序列和结构 已知与RNA复制有关的元素,但它们在RNA封盖中的作用从未得到评估。我们 将使用一系列突变的5'UTR RNA来测试NS5介导的RNA盖的特异性,以定义5'的方式 UTR末端序列和茎环A结构会影响结合和封盖效率。 3)退化 细胞RNA衰变途径的黄素基因组的抑制作用导致RNA衰变和RNAi的抑制 途径,改变了对感染的免疫反应。我们希望检验病毒的有趣假设 封盖效率可能会受到病毒的策略调节,以产生改变感染的非编码RNA 动力学。有趣的是,我们最近发现,未覆盖的病毒RNA被纳入病毒颗粒 并且可能构成感染细胞中病毒RNA的三分之一。这种令人惊讶的高水平的无盖RNA 可能是由R​​NA衰减因子处理的,并导致高水平的小SFRNA,已显示 以前是对抗RNAi和干扰素反应(除其他事项)。因此,我们将检查 NS5上限效率如何影响病毒RNA的产生,细胞中未覆盖的病毒RNA的命运以及如何 这些无盖RNA的产物会影响黄素感染的动力学。总体而言,这个项目将 显着提高了我们对可以利用抗病毒物的黄病毒复制机制的理解 和疫苗开发,并将提供有关黄病毒如何引起疾病的关键新信息。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme.
  • DOI:
    10.1016/j.antiviral.2018.03.013
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    Feibelman KM;Fuller BP;Li L;LaBarbera DV;Geiss BJ
  • 通讯作者:
    Geiss BJ
Kunjin Virus, Zika Virus, and Yellow Fever Virus Infections Have Distinct Effects on the Coding Transcriptome and Proteome of Brain-Derived U87 Cells.
  • DOI:
    10.3390/v15071419
  • 发表时间:
    2023-06-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brand C;Deschamps-Francoeur G;Bullard-Feibelman KM;Scott MS;Geiss BJ;Bisaillon M
  • 通讯作者:
    Bisaillon M
Development of a SARS-CoV-2 nucleocapsid specific monoclonal antibody.
  • DOI:
    10.1016/j.virol.2021.01.003
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Terry JS;Anderson LB;Scherman MS;McAlister CE;Perera R;Schountz T;Geiss BJ
  • 通讯作者:
    Geiss BJ
Conserved motifs in the flavivirus NS3 RNA helicase enzyme.
Padlock probe-based rolling circle amplification lateral flow assay for point-of-need nucleic acid detection.
  • DOI:
    10.1039/d1an00399b
  • 发表时间:
    2021-06-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jain S;Dandy DS;Geiss BJ;Henry CS
  • 通讯作者:
    Henry CS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Geiss其他文献

Brian Geiss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Geiss', 18)}}的其他基金

Mechanisms and functional implications of SARS-CoV-2 mRNA capping and modification.
SARS-CoV-2 mRNA 加帽和修饰的机制和功能意义。
  • 批准号:
    10185716
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
Mechanism of Flavivirus RNA Capping
黄病毒RNA加帽机制
  • 批准号:
    10078236
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
A High-Throughput Screen for Antiviral Inhibitors of the Alphavirus RNA Capping Enzyme
甲病毒 RNA 加帽酶抗病毒抑制剂的高通量筛选
  • 批准号:
    8963432
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
A High-Throughput Screen for Antiviral Inhibitors of the Alphavirus RNA Capping Enzyme
甲病毒 RNA 加帽酶抗病毒抑制剂的高通量筛选
  • 批准号:
    9184537
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
A High-Throughput Screen for Antiviral Inhibitors of the Alphavirus RNA Capping Enzyme
甲病毒 RNA 加帽酶抗病毒抑制剂的高通量筛选
  • 批准号:
    8799155
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
Development and optimization of novel anti -flavivirus compounds
新型抗黄病毒化合物的开发和优化
  • 批准号:
    8261432
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
A High-Throughput Assay for Probes of the Flavivirus RNA Guanylyltransferase
黄病毒 RNA 鸟苷基转移酶探针的高通量测定
  • 批准号:
    8070184
  • 财政年份:
    2010
  • 资助金额:
    $ 37.5万
  • 项目类别:
A High-Throughput Assay for Probes of the Flavivirus RNA Guanylyltransferase
黄病毒 RNA 鸟苷基转移酶探针的高通量测定
  • 批准号:
    8204514
  • 财政年份:
    2010
  • 资助金额:
    $ 37.5万
  • 项目类别:
Development and optimization of novel anti -flavivirus compounds
新型抗黄病毒化合物的开发和优化
  • 批准号:
    7675657
  • 财政年份:
    2009
  • 资助金额:
    $ 37.5万
  • 项目类别:
Development and optimization of novel anti -flavivirus compounds
新型抗黄病毒化合物的开发和优化
  • 批准号:
    8465809
  • 财政年份:
  • 资助金额:
    $ 37.5万
  • 项目类别:

相似海外基金

Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
  • 批准号:
    10725416
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Pathogenesis of thrombotic microangiopathies
血栓性微血管病的发病机制
  • 批准号:
    10608740
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Regulation of RNA sensing and viral restriction by RNA structures
RNA 结构对 RNA 传感和病毒限制的调节
  • 批准号:
    10667802
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Glia Exclusive Gene Therapy
胶质细胞独家基因疗法
  • 批准号:
    10739502
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Mechanisms of viral RNA maturation by co-opting cellular exonucleases
通过选择细胞核酸外切酶使病毒 RNA 成熟的机制
  • 批准号:
    10814079
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了