TOPOLOGICAL MECHANISMS OF DNA BREAK REPAIR IN LYMPHOCYTES
淋巴细胞 DNA 断裂修复的拓扑机制
基本信息
- 批准号:10305139
- 负责人:
- 金额:$ 47.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAntigen ReceptorsArchitectureCell CycleCellsChromatinChromosomal translocationChromosome DeletionChromosomesComplexCoupledDNADNA DamageDNA Double Strand BreakDNA Sequence AlterationDNA metabolismDNA-Directed RNA PolymeraseDefectDiffusionDistantDouble Strand Break RepairElementsEnhancersEnvironmentEpigenetic ProcessFundingG1 ArrestG1 PhaseGamma-H2AXGap JunctionsGene ExpressionGenerationsGenesGenetic TranscriptionGenomeGenome StabilityGenomic InstabilityGoalsHistonesImmunoglobulin Class SwitchingImmunoglobulin Switch RecombinationImpairmentKnowledgeLesionLinkLocationLymphocyteMaintenanceMalignant NeoplasmsMediatingMolecular ConformationNonhomologous DNA End JoiningOncogenicOutcomePatternPhosphorylationPhysiologicalPhysiological ProcessesProbabilityProcessReceptor GeneRepressionResolutionRestSideSiteSomatic CellStretchingStructureSurfaceTestingTopoisomeraseV(D)J RecombinationVariantataxia telangiectasia mutated proteinbasecohesindefined contributiongene repressioninnovationlymphoid neoplasmmammalian genomepromoterrecombinational repairrecruitrepairedresponse
项目摘要
Summary
Mammalian genomes are subject to a constant barrage of damage from metabolites, external agents, or
physiologic processes, including transcription and replication. Developing lymphocytes also target double-
strand breaks (DSBs) to antigen receptor loci during V(D)J recombination. To maintain genomic stability, DSBs
must be repaired with high fidelity, minimizing oncogenic alterations such as chromosomal deletions and
translocations. The DSB response extensively revises flanking chromatin via ATM-mediated phosphorylation of
the histone variant H2Ax, producing γH2Ax, which spreads for 100s of kb around a DSB. In somatic cells, most
of which are non-cycling, γH2Ax domains serve as chromatin-based platforms to facilitate repair by the non-
homologous end joining (NHEJ) and, likely, as adherent surfaces to hold broken chromosome ends together.
Indeed, ends are destabilized in cells lacking ATM or H2Ax, which have elevated levels of translocations.
Thus, a deeper understanding of mechanisms that coordinate DSB repair and sequester ends from the rest of
the genome remains an important goal. In this regard, links between repair, transcription, and epigenetic
landscapes around DSBs are emerging. A feature that bridges many of these processes is the 3D
conformation of chromatin, which determines the range of chromosomal contacts made by a persistent DSB.
The applicant has shown that the topological “environment” of a DSB in non-cycling lymphocytes determines
the spread and contours of γH2Ax domains, paralleling chromosome contacts of the break site. In addition,
transcription of genes within γH2Ax domains was repressed, perhaps minimizing introduction of new breaks
associated with RNA polymerase readthrough. A key finding from the prior funding period was that DSBs near
the border of topologically-associated domains (TADs) produce highly asymmetric γH2Ax platforms on each
chromosome end – one of which is very short – which may enhance disassociation of chromosome ends when
the break persists. Indeed, genomic alterations, including those associated with cancer, are enriched near
topological borders. Launching from these discoveries, the applicant now proposes to define the functional
relationships between chromosome topology and DSB repair outcomes. Overarching hypotheses for three
aims of the project are: (i) persistent DSBs adjacent to TAD borders will generate distinct profiles of repair
products due to unstable association of chromosome ends, promoting extensive deletions and translocations,
(ii) the mechanism of TAD formation, called loop extrusion, is required for generation of DDR platforms;
impairment of this process will deleteriously affect repair outcomes, and (iii) transcription within a γH2Ax
domain harboring a persistent DSB will enhance the probability of its deletional repair to an expressed gene
with which it contacts. Together, the proposed project will fill fundamental knowledge gaps about how DSB
responses integrate spatial, transcriptional, and chromatin-based mechanisms to sequester chromosome ends
for efficient repair, minimizing their oncogenic potential in somatic cells.
概括
哺乳动物基因组受到代谢物,外部药物或
生理过程,包括转录和复制。发展淋巴细胞也靶向双重
在V(d)J重组期间,链断裂(DSB)到抗原受体基因座。为了维持基因组稳定性,DSB
必须以高忠诚度修复,最大程度地减少染色体缺失和
易位。 DSB响应通过ATM介导的磷酸化广泛修订侧翼染色质
组蛋白变体H2AX产生γH2AX,在DSB周围扩散100 kb。在体细胞中,大多数
其中是非周期的,γH2AX结构域是基于染色质的平台,可促进非 -
同源端连接(NHEJ),并且很可能是将染色体末端固定在一起的坚固表面。
实际上,末端在缺乏ATM或H2AX的细胞中稳定,而ATM或H2AX的易位水平升高。
这是对协调DSB修复和隔离的机制的更深入的理解。
基因组仍然是一个重要目标。在这方面,修复,转录和表观遗传学之间的联系
DSB周围的景观正在出现。桥接许多这些过程的功能是3D
染色质的构象,它决定了持续的DSB进行的染色体接触范围。
申请人表明,确定的非周期淋巴细胞中DSB的拓扑“环境”
γH2AX结构域的扩散和轮廓与断裂位点的染色体接触并行。此外,
反映了γH2AX结构域中基因的转录,也许最大程度地减少了新断裂的引入
与RNA聚合酶读取有关。以前的资金期间的一个关键发现是DSB附近
拓扑相关域(TAD)的边界在每个方面产生高度不对称的γH2AX平台
染色体末端 - 其中之一很短 - 当染色体结束时可能会增强染色体的分离
休息仍然存在。实际上,基因组改变,包括与癌症相关的基因组改变,富集在附近
拓扑边界。从这些发现启动,现在适用的提案来定义功能
染色体拓扑与DSB修复结果之间的关系。三个总体假设
该项目的目的是:(i)与tad边界相邻的持久性DSB将产生独特的维修概况
产品由于染色体末端不稳定的关联而引起的产品,促进了广泛的缺失和易位,
(ii)生成DDR平台所必需的TAD形成的机理,称为循环扩展;
该过程的损害将对修复结果进行细微影响,并且(iii)转录在γH2AX中
带有持续DSB的域将提高其缺失修复的可能性
它与之接触。拟议的项目一起将填补有关DSB的基本知识差距
响应整合了空间,转录和基于染色质的机制,以隔离染色体末端
为了有效修复,将其在体细胞中的致癌潜力最小化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eugene M Oltz其他文献
Increased COVID-19 Mortality and Deficient SARS-CoV-2 Immune Response Are Not Associated with Higher Levels of Endemic Coronavirus Antibodies
COVID-19 死亡率增加和明确的 SARS-CoV-2 免疫反应与地方性冠状病毒抗体水平升高无关
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Bindu Adhikari;Eugene M Oltz;J. Bednash;J. C. Horowitz;J. Amimo;Sergei A. Raev;Soledad Fernández;M. Anghelina;Shan;Mark P. Rubinstein;Daniel M. Jones;Linda J. Saif;A. Vlasova - 通讯作者:
A. Vlasova
Eugene M Oltz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eugene M Oltz', 18)}}的其他基金
Project 1: COVID-19 prevalence, transmission, and protection in extended first responder cohorts
项目 1:扩大急救人员群体中的 COVID-19 流行率、传播和保护
- 批准号:
10688392 - 财政年份:2020
- 资助金额:
$ 47.21万 - 项目类别:
Project 1: COVID-19 prevalence, transmission, and protection in extended first responder cohorts
项目 1:扩大急救人员群体中的 COVID-19 流行率、传播和保护
- 批准号:
10222410 - 财政年份:2020
- 资助金额:
$ 47.21万 - 项目类别:
SEQUENCE-SPECIFIC CHROMATIN MODIFIERS; NOVEL PROTEIN THERAPEUTICS FOR B CELL LYMPHOMA
序列特异性染色质修饰剂;
- 批准号:
8885259 - 财政年份:2015
- 资助金额:
$ 47.21万 - 项目类别:
TOPOLOGICAL MECHANISMS OF DNA BREAK REPAIR IN LYMPHOCYTES
淋巴细胞 DNA 断裂修复的拓扑机制
- 批准号:
10663321 - 财政年份:2015
- 资助金额:
$ 47.21万 - 项目类别:
TOPOLOGICAL MECHANISMS OF DNA BREAK REPAIR IN LYMPHOCYTES
淋巴细胞 DNA 断裂修复的拓扑机制
- 批准号:
10415222 - 财政年份:2015
- 资助金额:
$ 47.21万 - 项目类别:
Topological Mechanisms of DNA Break Repair in Lymphocytes
淋巴细胞DNA断裂修复的拓扑机制
- 批准号:
9899620 - 财政年份:2015
- 资助金额:
$ 47.21万 - 项目类别:
LOCALIZED REVISION OF EPIGENETIC LANDSCAPES INDUCED BY DNA DOUBLE-STRAND BREAKS
DNA 双链断裂引起的表观遗传景观的局部修正
- 批准号:
8197622 - 财政年份:2010
- 资助金额:
$ 47.21万 - 项目类别:
TARGETING EPIGENOMIC SIGNATURES IN NON-HODGKIN LYMPHOMA FOR NOVEL THERAPEUTICS
针对非霍奇金淋巴瘤的表观基因组特征进行新疗法
- 批准号:
8699694 - 财政年份:2010
- 资助金额:
$ 47.21万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 47.21万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 47.21万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 47.21万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 47.21万 - 项目类别: