Fibrotic remodeling of lymph nodes disrupts T cell function in fibrosis and cancer
淋巴结纤维化重塑破坏纤维化和癌症中的 T 细胞功能
基本信息
- 批准号:10305424
- 负责人:
- 金额:$ 3.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAntigen-Presenting CellsAntigensAreaAtomic Force MicroscopyBiochemicalBiologyBiomedical EngineeringBiophysicsCancer BiologyCancer EtiologyCancer PatientCancer Research ProjectCell SurvivalCell physiologyCell surfaceCellsCellular biologyCessation of lifeChronicCicatrixClinicalCollagenCombined Modality TherapyComplementCuesDepositionDevelopmentDiseaseDisease ProgressionDoctor of PhilosophyEffectivenessEnsureExtracellular MatrixExtracellular Matrix ProteinsFibroblastsFibronectinsFibrosisFunctional disorderFutureGenesGeneticGoalsHealthHomeostasisHumanImageImmuneImmune EvasionImmunologyImmunotherapyIn VitroInfiltrationInjuryIntegrin alphaVbeta3IntegrinsKnowledgeLinkLungLymphocyteMalignant NeoplasmsMalignant neoplasm of lungMeasuresMechanicsMediatingMentorsMethodsMyofibroblastNeoplasm MetastasisOrganOutcomePathogenicityPathologicPathologyPathway interactionsPatientsPharmacologyPhasePhenotypeProcessProductionPrognosisPropertyPulmonary FibrosisResearchResearch Project GrantsReticular CellSeriesSignal TransductionSiteStromal CellsStructureSystemT cell regulationT cell responseT-Cell ActivationT-Cell DevelopmentT-LymphocyteTestingTherapeuticTissuesTrainingTranscription CoactivatorTumor-infiltrating immune cellsWorkadaptive immune responsecancer immunotherapycytokinedraining lymph nodeidiopathic pulmonary fibrosisimmune activationimmunoengineeringinhibitor/antagonistinnovationinterestinterstitiallymph node microenvironmentlymph nodesmechanical forcemechanotransductionmelanomamouse modelpathogenprofessorprogramsresponsescaffoldsenescenceskillstumortumor immunologytumor microenvironmenttumor progressiontumorigenesiswound healing
项目摘要
Project Summary/Abstract
Fibrosis is a hallmark of cancer that promotes proliferation, metastasis, and immune evasion by altering the
tumor stroma which accounts for up to 90% of tumor mass. In fibrosis, pathogenic departure from homeostasis
results in the excessive deposition of extracellular matrix (ECM) by myofibroblasts, creating discrete regions of
non-resolving wound repair. These regions of fibrotic ECM become dominant regulators of cell phenotype,
providing both biochemical (i.e. ECM composition and soluble factors) and biophysical (i.e. mechanical forces
and material properties) cues to promote tumor progression and restrict immune cell infiltration. Soluble factors
within the interstitial space of these fibrotic organs drain into surrounding lymph nodes (LNs) and induce fibrotic
remodeling in the LN, a common sign of poor prognosis in cancer and other fibrotic pathologies. LNs have a
distinct microenvironment known as the conduit system, which traffics antigens and serves as a migratory
scaffold for lymphocytes. In health, its organization facilitates interactions between T cells and antigen presenting
cells to ensure robust immune activation in response to cancer, pathogens, and injury. Fibroblastic reticular cells
(FRCs) construct and ensheath this collagenous network and produce cytokines that promote T cell survival and
homeostasis. Disruption of this ECM network leads to T cell dysregulation and depletion, implicating lymph node
fibrosis in disease progression. The mechanisms of fibrotic initiation in the LN and the effect of LN fibrosis in T
cell function is poorly understood, yet represent an attractive therapeutic opportunity. In other tissues, fibrotic
remodeling mechanically stiffens the microenvironment, initiating integrin-mediated signaling cascades. I
hypothesize that similar mechanisms drive LN fibrosis by FRCs, and seek to explore how remodeling of the LN
microenvironment affects development of T cell responses in fibrosis and cancer.
The first aim of this proposal (F99 phase) evaluates whether integrin signaling drives LN fibrosis by promoting
FRC-to-myofibroblast differentiation. This will be accomplished in part by analyzing LNs from Idiopathic
Pulmonary Fibrosis and melanoma patients with advanced mechanobiological (atomic force microscopy) and
spatial-omic imaging (CODEX) methods to measure stiffness, ECM content, and FRC/T cell phenotypes. The
knowledge and skills learned in Aim 1 are then applied in Aim 2 (K00 phase) to study the impact of fibrosis in
tumor draining LNs on anti-tumor T cell responses in murine models of melanoma.
项目摘要/摘要
纤维化是癌症的标志,可通过改变来促进增殖,转移和免疫逃避
肿瘤基质占肿瘤质量的90%。在纤维化中,致病性偏离稳态
导致肌纤维细胞过度沉积细胞外基质(ECM),从而创建离散区域
非分辨伤口修复。这些纤维化ECM的区域成为细胞表型的主要调节剂,
提供生化(即ECM组成和可溶性因子)和生物物理(即机械力)
材料特性)提示促进肿瘤进展并限制免疫细胞浸润。可溶性因素
在这些纤维化器官的间质空间内,排入周围淋巴结(LN)并诱导纤维化
在LN中进行重塑,这是癌症和其他纤维化病理预后不良的常见迹象。 lns有一个
独特的微环境被称为导管系统,该系统运输抗原并用作迁移
淋巴细胞的支架。在健康方面,其组织促进了T细胞与抗原呈现之间的相互作用
细胞以确保响应癌症,病原体和损伤的强大免疫激活。成纤维细胞网细胞
(FRC)构建和围绕该胶原网络的构建并产生促进T细胞存活和的细胞因子
稳态。该ECM网络的破坏导致T细胞失调和耗竭,涉及淋巴结
疾病进展中的纤维化。 LN中纤维化起始的机制以及LN纤维化在T中的作用
细胞功能知之甚少,但代表了一个有吸引力的治疗机会。在其他组织中,纤维化
重塑可以机械地将微环境僵硬,从而启动整联蛋白介导的信号级联。我
假设类似的机制驱动FRC驱动LN纤维化,并寻求探索LN的重塑
微环境影响纤维化和癌症中T细胞反应的发展。
该提案的第一个目的(F99阶段)评估整联蛋白信号传导是否通过促进驱动LN纤维化驱动LN纤维化
frc-to-to Myofibroblast分化。这将部分通过分析特发性的LN来完成
肺纤维化和黑色素瘤患者具有晚期机械生物学(原子力显微镜)和
测量刚度,ECM含量和FRC/T细胞表型的空间 - 乐(Codex)方法。这
然后将AIM 1中学到的知识和技能应用于AIM 2(K00阶段),以研究纤维化的影响
黑色素瘤鼠模型中的抗肿瘤T细胞反应上的肿瘤在抗肿瘤T细胞反应上排出。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grace C Bingham其他文献
Grace C Bingham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grace C Bingham', 18)}}的其他基金
Fibrotic remodeling of lymph nodes disrupts T cell function in fibrosis and cancer
淋巴结纤维化重塑破坏纤维化和癌症中的 T 细胞功能
- 批准号:
10470223 - 财政年份:2021
- 资助金额:
$ 3.72万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Systems Biology of Antigen and T-Cell Transport in Cancer Immunotherapy
癌症免疫治疗中抗原和 T 细胞运输的系统生物学
- 批准号:
10751192 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Targeting the microtubule cytoskeleton to promote cavernous nerve regeneration and erectile function after injury
靶向微管细胞骨架促进损伤后海绵体神经再生和勃起功能
- 批准号:
10719124 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Pathogenic B cell:CD4 T cell interactions in a novel B cell-dependent EAE mouse model of multiple sclerosis
致病性 B 细胞:CD4 T 细胞在新型 B 细胞依赖性多发性硬化症 EAE 小鼠模型中的相互作用
- 批准号:
10718277 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Modulation of the TLR4-Lyn interaction in SAH
SAH 中 TLR4-Lyn 相互作用的调节
- 批准号:
10844778 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别:
Immunological Basis of Autoimmune Addison's Disease in a Novel Canine Model System
新型犬模型系统中自身免疫阿狄森氏病的免疫学基础
- 批准号:
10830527 - 财政年份:2023
- 资助金额:
$ 3.72万 - 项目类别: