Engineering Therapeutic Human Immune Cells with Modular Self-contained Genetic Circuits
具有模块化独立遗传电路的工程治疗性人类免疫细胞
基本信息
- 批准号:10303600
- 负责人:
- 金额:$ 22.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Adenovirus VectorAdoptionAreaBehaviorBiotechnologyCRISPR/Cas technologyCell TherapyCellsClinicalClinical TrialsComplexDNADevelopmentDiagnosticDouble Stranded DNA VirusEngineered GeneEngineeringEnsureEnvironmentEpisomeExploratory/Developmental GrantFundingFutureGene ExpressionGene Expression ProfileGene Transduction AgentGeneticGenetic TranscriptionGenomeGenome engineeringGenomicsGoalsHealthHumanHuman Cell LineHuman EngineeringHuman GenomeHypoxiaImmuneImmunologic ReceptorsInsertional MutagenesisIntegraseKineticsLeadLifeMedicalMedicineMissionModernizationNational Institute of Biomedical Imaging and BioengineeringNuclearPathologicPatientsPhenotypeProteinsResearch PersonnelSafetySavingsScienceSignal TransductionSiteStimulusT-LymphocyteTechniquesTechnologyTestingTherapeuticTimeTransgenic OrganismsUnited States National Institutes of HealthVertebral columnViral GenesViral GenomeVirusWorkbasebiological systemsbiomedical scientistcellular engineeringchimeric antigen receptorclinical applicationclinically relevantcostcytokinedesigndrug productionepigenetic silencingfunctional genomicsgene therapygenetic payloadhigh riskimmunoregulationin-vivo diagnosticsinnovationmesenchymal stromal cellnext generationpatient safetypreservationpreventprogramsprophylacticreceptor densityresponsesmall moleculesynthetic biologytooltranscription factorviral DNA
项目摘要
PROJECT SUMMARY/ABSTRACT
Current strategies to engineer human cell-based therapeutics rely upon the delivery and subsequent
genomic integration of transgenic payloads. Although these approaches have catalyzed transformative
medical advances, the integration of transgenic DNA permanently disrupts natural genomic sequences
and can lead to unexpected and even hazardous consequences. In addition, integrated transgenic DNA
is often unpredictably expressed and is prone to epigenetic silencing over time, especially within primary
human immune cells. Furthermore, existing approaches to validate large transgenic genomically-
integrated DNA cargoes are inefficient and costly. These critical barriers limit the extent to which human
cells can be repurposed and engineered as cell-based therapeutics and these challenges are preventing
biotechnological and clinical innovations. Non-integrating, double-stranded DNA viruses have evolved
sophisticated solutions to these critical barriers, and they can stably persist within human cells as
circularized self-contained episomes across cellular divisions and for the lifetime of infected hosts. These
viruses accomplish this remarkable persistence by tailoring their own gene expression patterns,
synchronizing their genomic replication, and by reshaping the endogenous transcriptional networks of
host cells. In this proposal, we will harness these natural abilities and refine them using clinical-grade
gene therapy vector testbeds. Our approach will establish an entirely new way to use of circular,
orthogonal episomal DNA within human cells.
In Aim 1 of this proposal, we design, build, test, and optimize genetically-encoded episomal modules to
enable i) site-specific and tunable genomic localization, ii) programmable episomal replication, and iii)
multi-layered safety switches, within clinically validated integrase-deficient lentiviral (IDLV) and high-
capacity adenoviral (HcAdV) gene therapy vector testbeds. In Aim 2 of this proposal, we will build genetic
circuits within IDLV and HcAdV gene therapy vectors that sense hypoxic environments and/or small
molecules and respond to these signals in real time by producing fluorometric diagnostics and/or
synthetic CRISPR/Cas9-based transcription factors to drive the expression of therapeutically crucial
cytokines or biomedically relevant phenotypic changes. In each independent Aim, we will use
experimental techniques at the interface of functional genomics, genome engineering, and synthetic
biology. To preserve and maximize the therapeutic utility of our results and to ensure applicability beyond
the scope of this proposal, both Aims will be carried out using primary human T cells and mesenchymal
stromal cells. Collectively, this project will combine engineering principles and lessons from biomedical
sciences to spur advances that will be broadly useful to biomedical researchers, actionable for clinicians,
and meaningful to future patients in need of sophisticated cell-based therapeutics.
项目概要/摘要
当前设计基于人类细胞的疗法的策略依赖于递送和后续
转基因有效负载的基因组整合。尽管这些方法已经促进了变革
医学进步,转基因 DNA 的整合永久破坏了自然基因组序列
并可能导致意想不到的甚至危险的后果。此外,整合的转基因DNA
通常表达不可预测,并且随着时间的推移容易发生表观遗传沉默,尤其是在原代体内
人类免疫细胞。此外,现有的验证大型转基因基因组的方法
整合 DNA 货物效率低且成本高。这些关键障碍限制了人类
细胞可以被重新利用和设计为基于细胞的疗法,这些挑战正在阻止
生物技术和临床创新。非整合双链DNA病毒已经进化
针对这些关键障碍的复杂解决方案,它们可以稳定地存在于人体细胞内
跨细胞分裂和受感染宿主的一生循环化独立附加体。这些
病毒通过定制自己的基因表达模式来实现这种非凡的持久性,
同步它们的基因组复制,并通过重塑内源转录网络
宿主细胞。在本提案中,我们将利用这些自然能力并使用临床级的技术对其进行改进
基因治疗载体试验台。我们的方法将建立一种全新的循环使用方式,
人类细胞内的正交附加型 DNA。
在本提案的目标 1 中,我们设计、构建、测试和优化基因编码的附加型模块,以
实现 i) 位点特异性和可调节的基因组定位,ii) 可编程游离复制,以及 iii)
多层安全开关,在临床验证的整合酶缺陷型慢病毒(IDLV)和高
容量腺病毒(HcAdV)基因治疗载体试验台。在本提案的目标 2 中,我们将建立遗传
IDLV 和 HcAdV 基因治疗载体内的电路可感知缺氧环境和/或小
分子并通过产生荧光诊断和/或实时响应这些信号
基于 CRISPR/Cas9 的合成转录因子可驱动治疗关键因子的表达
细胞因子或生物医学相关的表型变化。在每个独立的目标中,我们将使用
功能基因组学、基因组工程和合成领域的实验技术
生物学。保留并最大限度地提高我们结果的治疗效用,并确保其适用性超出
在该提案的范围内,这两个目标都将使用原代人类 T 细胞和间充质细胞来实现
基质细胞。总的来说,该项目将结合工程原理和生物医学的经验教训
科学推动进步,对生物医学研究人员广泛有用,对临床医生可采取行动,
对未来需要复杂的细胞疗法的患者有意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isaac Hilton其他文献
Isaac Hilton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isaac Hilton', 18)}}的其他基金
Programmable control over histone acetylation at human regulatory elements using precision epigenome editing
使用精确表观基因组编辑对人类调控元件的组蛋白乙酰化进行可编程控制
- 批准号:
10669331 - 财政年份:2022
- 资助金额:
$ 22.93万 - 项目类别:
Engineering Therapeutic Human Immune Cells with Modular Self-contained Genetic Circuits
具有模块化独立遗传电路的工程治疗性人类免疫细胞
- 批准号:
10617360 - 财政年份:2021
- 资助金额:
$ 22.93万 - 项目类别:
Site-specific control of human gene regulation for therapeutically applicable mechanistic insights
人类基因调控的位点特异性控制以获得治疗上适用的机制见解
- 批准号:
10282969 - 财政年份:2021
- 资助金额:
$ 22.93万 - 项目类别:
Site-specific control of human gene regulation for therapeutically applicable mechanistic insights
人类基因调控的位点特异性控制以获得治疗上适用的机制见解
- 批准号:
10488643 - 财政年份:2021
- 资助金额:
$ 22.93万 - 项目类别:
Site-specific control of human gene regulation for therapeutically applicable mechanistic insights (R35GM143532)
人类基因调控的位点特异性控制以获得治疗上适用的机制见解(R35GM143532)
- 批准号:
10807287 - 财政年份:2021
- 资助金额:
$ 22.93万 - 项目类别:
Engineering Therapeutic Human Immune Cells with Modular Self-contained Genetic Circuits
具有模块化独立遗传电路的工程治疗性人类免疫细胞
- 批准号:
10430257 - 财政年份:2021
- 资助金额:
$ 22.93万 - 项目类别:
Site-specific control of human gene regulation for therapeutically applicable mechanistic insights
人类基因调控的位点特异性控制以获得治疗上适用的机制见解
- 批准号:
10640172 - 财政年份:2021
- 资助金额:
$ 22.93万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 22.93万 - 项目类别:
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 22.93万 - 项目类别:
PREVENT - Practice-based Approaches to Promote HPV Vaccination
预防 - 基于实践的方法促进 HPV 疫苗接种
- 批准号:
10638515 - 财政年份:2023
- 资助金额:
$ 22.93万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 22.93万 - 项目类别: