Magnesium supplement and vascular health: Machine learning from the longitudinal medical record
镁补充剂和血管健康:从纵向病历中进行机器学习
基本信息
- 批准号:10301239
- 负责人:
- 金额:$ 45.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAdverse eventAffectAmericanAtherosclerosisBenefits and RisksBloodBlood VesselsCalciumCardiacCharacteristicsClinicalClinical effectivenessDataDatabasesDiabetes MellitusDiagnosisDietary MagnesiumEffectivenessElectronic Health RecordEligibility DeterminationEnzymesEquilibriumFunctional disorderGoalsHealthHealth BenefitHeart failureHospitalizationHumanHypomagnesemiaImpairmentIndividualInflammationInsulin ResistanceIntakeInvestigationKnowledgeLaboratory AnimalsLinkLong-Term EffectsLongterm Follow-upMachine LearningMagnesiumMagnesium DeficiencyMarketingMeasuresMedical RecordsMethodologyMg supplementationMineralsModalityModelingObservational StudyOralOutcomePathway interactionsPatientsPatternPharmacoepidemiologyPilot ProjectsPolypharmacyPopulationPublic HealthRandomized Controlled TrialsReportingRiskRisk FactorsSafetySample SizeSerumSerum magnesium level observedStructural ModelsSystemTechniquesTechnologyTestingTimeUnited States Department of Veterans AffairsUnited States Food and Drug AdministrationUnited States National Institutes of HealthVeteransVeterans Health AdministrationWeightWorkactive comparatorbasecohortcostdeep learningdesigndiabetes riskdietary supplementsendothelial dysfunctionfollow-uphigh riskimprovedimproved outcomeindividual patientinsulin sensitivityinterestmortalitymortality riskmultiple chronic conditionsnovelpersonalized decisionphenotypic datapillprecision medicinepredictive modelingprospectiverandomized controlled designrisk prediction modeltherapeutic effectivenesstool
项目摘要
Project Summary/Abstract
Over half of adult Americans use dietary supplements. However, little is known about their safety
and effectiveness as these products are not approved by the US Food and Drug Administration
(FDA) and post-marketing surveillance is limited to adverse events. The NIH Office of Dietary
Supplements (ODS) seeks to fill in that gap and has identified electronic health record (EHR) data
as a potential tool to advance that goal. Preliminary data from our pilot study sponsored by the
NIH ODS that used advanced machine/deep learning techniques suggest that magnesium
supplements may lower the risk of heart failure (HF) in patient with diabetes mellitus (DM) and
may improve outcomes in those with HF. Both HF and DM affect the health and outcomes of
millions of Americans. DM is a risk factor for HF and adversely affects outcomes in those with HF.
Magnesium is an integral part of over 300 human enzyme systems, which are impaired in
magnesium deficiency. Findings from our study suggest that a low dietary magnesium intake is
associated with a higher risk of incident HF, especially among those with DM. However, less is
known about this relationship in patients with HF. The Specific Aims 1 and 2 of the proposed
projects are to test the hypotheses that a new prescription for oral magnesium supplement is
associated with a lower risk of incident HF in those with DM and of mortality and hospitalization
in patients with HF. Although magnesium is inexpensive and relatively safe, its long-term effects
may vary for individual patients. Thus, instead of recommending it to millions of patients, it would
be ideal to recommend to individuals who are most likely to benefit. Thus, our Specific Aim 3 is to
develop and validate a novel explainable deep learning-based risk prediction model to determine
with precision the optimal clinical setting under which an individual may derive clinical benefits
from magnesium supplementation given their individual characteristics including multimorbidity
and polypharmacy. These aims will be achieved by interrogating the Veterans Affairs (VA)
national EHR data that includes over 2 million Veterans with DM and 1 million with HF with ~20
years of longitudinal data on magnesium supplements, serum magnesium, and outcomes. We
will use a new-user design, marginal structural model (propensity score weighting) with machine-
learning-based estimation and stability analyses to minimize confounding and account for
potential biases. The prediction model for individual risk/benefit will be validated using the Cerner
Health Facts® data for generalizability in non-Veteran populations. The findings of proposed study
will generate new evidence that will have direct clinical implications and those of Aim 3 specifically
will provide a novel precision medicine tool to individualize magnesium supplement use.
项目概要/摘要
超过一半的美国成年人使用膳食补充剂,但人们对其安全性知之甚少。
和有效性,因为这些产品未经美国食品和药物管理局批准
(FDA) 和上市后监测仅限于不良事件。
补充品 (ODS) 旨在填补这一空白,并确定了电子健康记录 (EHR) 数据
作为推进这一目标的潜在工具。
使用先进机器/深度学习技术的 NIH ODS 表明镁
补充剂可以降低糖尿病 (DM) 患者发生心力衰竭 (HF) 的风险
可能会改善心力衰竭患者的预后。心力衰竭和糖尿病都会影响患者的健康和预后。
数以百万计的美国人认为,糖尿病是心力衰竭的一个危险因素,并对心力衰竭患者的预后产生不利影响。
镁是 300 多种人体酶系统的重要组成部分,这些酶系统在
我们的研究结果表明,膳食镁摄入量低会导致镁缺乏。
与较高的心力衰竭风险相关,尤其是对于患有糖尿病的患者而言。
已知心力衰竭患者的这种关系。所提议的具体目标 1 和 2。
项目旨在测试以下假设:口服镁补充剂的新处方是
与糖尿病患者发生心力衰竭、死亡和住院的风险较低相关
尽管镁价格便宜且相对安全,但其长期影响。
因此,它不会推荐给数百万患者,而是会因个体患者而异。
因此,我们的具体目标 3 是推荐给最有可能受益的个人。
开发并验证一种新颖的可解释的基于深度学习的风险预测模型,以确定
精确地确定个人可以获得临床益处的最佳临床环境
考虑到他们的个体特征(包括多发病),需要补充镁
这些目标将通过询问退伍军人事务部(VA)来实现。
国家 EHR 数据,包括超过 200 万患有 DM 的退伍军人和 100 万患有 HF 的退伍军人,其中约 20
我们对镁补充剂、血清镁和结果进行了多年的纵向数据。
将使用新用户设计、边际结构模型(倾向得分加权)和机器-
基于学习的估计和稳定性分析,以最大限度地减少混杂因素并考虑
个人风险/收益的预测模型将使用 Cerner 进行验证。
Health Facts® 数据在非退伍军人群体中的普遍适用性 拟议研究的结果。
将产生新的证据,这些证据将具有直接的临床意义,特别是目标 3 的意义
将提供一种新颖的精准医疗工具来个性化镁补充剂的使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALI AHMED其他文献
ALI AHMED的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALI AHMED', 18)}}的其他基金
Understanding CNS Stimulant Use and Safety in Veterans with TBI
了解患有 TBI 的退伍军人的中枢神经系统兴奋剂使用和安全性
- 批准号:
10538168 - 财政年份:2023
- 资助金额:
$ 45.96万 - 项目类别:
MWAS+ – A Novel Drug Repurposing Strategy for ADRD Prevention
MWAS — 预防 ADRD 的新型药物再利用策略
- 批准号:
10446705 - 财政年份:2022
- 资助金额:
$ 45.96万 - 项目类别:
MWAS+ – A Novel Drug Repurposing Strategy for ADRD Prevention
MWAS — 预防 ADRD 的新型药物再利用策略
- 批准号:
10677666 - 财政年份:2022
- 资助金额:
$ 45.96万 - 项目类别:
Magnesium supplement and vascular health: Machine learning from the longitudinal medical record
镁补充剂和血管健康:从纵向病历中进行机器学习
- 批准号:
10489843 - 财政年份:2021
- 资助金额:
$ 45.96万 - 项目类别:
Magnesium supplement and vascular health: Machine learning from the longitudinal medical record
镁补充剂和血管健康:从纵向病历中进行机器学习
- 批准号:
10672376 - 财政年份:2021
- 资助金额:
$ 45.96万 - 项目类别:
Improving Outcomes in Veterans with Heart Failure and Chronic Kidney Disease
改善患有心力衰竭和慢性肾脏病的退伍军人的预后
- 批准号:
10186538 - 财政年份:2019
- 资助金额:
$ 45.96万 - 项目类别:
Neurohormonal Blockade and Outcomes in Diastolic Heart Failure
舒张性心力衰竭的神经激素阻断和结果
- 批准号:
7929469 - 财政年份:2009
- 资助金额:
$ 45.96万 - 项目类别:
Neurohormonal Blockade and Outcomes in Diastolic Heart Failure
舒张性心力衰竭的神经激素阻断和结果
- 批准号:
7699418 - 财政年份:2009
- 资助金额:
$ 45.96万 - 项目类别:
Heart failure, chronic kidney disease, and renin-angiotensin system inhibition
心力衰竭、慢性肾脏疾病和肾素-血管紧张素系统抑制
- 批准号:
7837545 - 财政年份:2009
- 资助金额:
$ 45.96万 - 项目类别:
Heart failure, chronic kidney disease, and renin-angiotensin system inhibition
心力衰竭、慢性肾脏疾病和肾素-血管紧张素系统抑制
- 批准号:
7433751 - 财政年份:2006
- 资助金额:
$ 45.96万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 45.96万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 45.96万 - 项目类别:
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 45.96万 - 项目类别:
Developing a Risk Index for Functional Decline in Middle-Aged and Older Adults with HIV
制定中老年艾滋病毒感染者功能衰退的风险指数
- 批准号:
10762280 - 财政年份:2023
- 资助金额:
$ 45.96万 - 项目类别:
Development and implementation of a digital sleep intervention for preschoolers in foster care
为寄养中的学龄前儿童开发和实施数字睡眠干预
- 批准号:
10724304 - 财政年份:2023
- 资助金额:
$ 45.96万 - 项目类别: