Using rebuilt AAA+ enzymes to uncover the mechanisms of proteolysis at the mitochondrial inner membrane

使用重建的 AAA 酶揭示线粒体内膜的蛋白水解机制

基本信息

  • 批准号:
    10296122
  • 负责人:
  • 金额:
    $ 34.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The mitochondrial inner membrane is the site of essential cellular functions such as oxidative phosphorylation, phospholipid metabolism, and the regulation of apoptosis. These activities are performed by a composite mitochondrial proteome that requires constant resculpting to respond to both the changing metabolic demands of the cell and the emergence of damage driven by reactive oxygen species. This resculpting is performed by two mitochondrial AAA+ proteases, which harness the energy of ATP to recognize, unfold and degrade protein substrates both from within and surrounding the inner membrane. In humans, dysfunction of these proteases has been linked to the development of severe neurodegenerative disorders such as spinocerebellar ataxia. AAA+ proteases assemble as hexamers to form an internal proteolytic chamber into which substrates are forcibly translocated by a ring of ATPases. The study of the mitochondrial AAA+ proteases has been long hampered by their combination of multiple soluble catalytic domains with insoluble transmembrane domains for anchoring into the inner membrane. We utilize a protein- engineering approach to assemble previously membrane-constrained hexameric proteases in a soluble, active form. Our goal is to use these rebuilt proteases to perform a rigorous analysis of the mechanisms driving energy-dependent proteolysis at the mitochondrial inner membrane. The first aim of the proposal is to define how substrates are selected for degradation among the myriad mitochondrial proteins. Degradation signal sequences will be identified from physiological substrates to ask whether these signals are conserved across diverse mitochondrial proteins to enable recognition by common proteases. The second aim is to examine the recognition complex formed between these proteases and specific substrates. A series of complementary biochemical approaches will map the protease substrate binding sites and identify the complementary contacts used to promote selection and degradation. Finally, we will examine how the architecture of the proteolytic sites within the degradation chamber achieves specificity of peptide-bond cleavage specificity, resulting in site-specific cleavage of a class of substrates, including the regulator of mitochondrial fission. Together, these experiments will provide a rigorous mechanistic analysis of the mitochondrial AAA+ proteases and provide foundational knowledge to aid the development of small molecule modulators as future therapeutics.
线粒体内膜是必需细胞功能(例如氧化)的位点 磷酸化,磷脂代谢和凋亡的调节。这些活动是 由复合线粒体蛋白质组进行的 对于细胞的代谢需求不断变化以及造成的损害的出现 活性氧。该撤土由两个线粒体AAA+蛋白酶进行, 利用ATP的能量识别,展开和降解蛋白质底物都从 内部和周围的内膜。在人类中,这些蛋白酶的功能障碍是 与严重的神经退行性疾病(例如脊髓脑性共济失调)的发展有关。 AAA+蛋白酶在六聚体形成内部蛋白水解腔中组装 底物被ATPases环强行易位。线粒体AAA+的研究 多个可溶性催化结构域与 不溶性跨膜结构域,用于锚定内膜。我们利用蛋白质 工程方法来组装以前膜约束的六聚体蛋白酶 可溶性,有源形式。我们的目标是使用这些重建的蛋白酶对 在线粒体内膜上驱动能量依赖性蛋白水解的机制。这 该提案的第一个目的是定义如何在众多中选择底物降解 线粒体蛋白。将从生理中鉴定出降解信号序列 基板询问这些信号是否在各种线粒体蛋白上保存到 可以通过常见蛋白酶识别。第二个目的是检查识别综合体 在这些蛋白酶和特定底物之间形成。一系列互补的生化 方法将绘制蛋白酶底物结合位点并识别互补触点 用于促进选择和降解。最后,我们将研究如何 降解室内的蛋白水解位点可实现肽键裂解的特异性 特异性,导致一类底物的位点特异性切割,包括调节器 线粒体裂变。这些实验将共同提供严格的机械分析 线粒体AAA+蛋白酶,并提供基础知识以帮助发展 小分子调节剂作为未来的治疗剂。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Glynn其他文献

Steven Glynn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Glynn', 18)}}的其他基金

Using rebuilt AAA+ enzymes to uncover the mechanisms of proteolysis at the mitochondrial inner membrane
使用重建的 AAA 酶揭示线粒体内膜的蛋白水解机制
  • 批准号:
    10442568
  • 财政年份:
    2015
  • 资助金额:
    $ 34.36万
  • 项目类别:
Using rebuilt AAA+ enzymes to uncover the mechanisms of proteolysis at the mitochondrial inner membrane
使用重建的 AAA 酶揭示线粒体内膜的蛋白水解机制
  • 批准号:
    9300980
  • 财政年份:
    2015
  • 资助金额:
    $ 34.36万
  • 项目类别:
Using rebuilt AAA+ enzymes to uncover the mechanisms of proteolysis at the mitochondrial inner membrane
使用重建的 AAA 酶揭示线粒体内膜的蛋白水解机制
  • 批准号:
    10641861
  • 财政年份:
    2015
  • 资助金额:
    $ 34.36万
  • 项目类别:
Using rebuilt AAA+ enzymes to uncover the mechanisms of proteolysis at the mitochondrial inner membrane
使用重建的 AAA 酶揭示线粒体内膜的蛋白水解机制
  • 批准号:
    8944505
  • 财政年份:
    2015
  • 资助金额:
    $ 34.36万
  • 项目类别:

相似海外基金

Post translational modifications tune cardiac myosin
翻译后修饰调节心肌肌球蛋白
  • 批准号:
    10291447
  • 财政年份:
    2021
  • 资助金额:
    $ 34.36万
  • 项目类别:
Protein Phosphatase 1 Holoenzyme Formation and Subunit Exchange
蛋白磷酸酶 1 全酶形成和亚基交换
  • 批准号:
    9985412
  • 财政年份:
    2019
  • 资助金额:
    $ 34.36万
  • 项目类别:
Engagement and Communication Between Proteasonal Subcomplexes
蛋白酶子复合物之间的参与和交流
  • 批准号:
    9892109
  • 财政年份:
    2017
  • 资助金额:
    $ 34.36万
  • 项目类别:
Metalloenzymes and metal homeostasis
金属酶和金属稳态
  • 批准号:
    9069232
  • 财政年份:
    2016
  • 资助金额:
    $ 34.36万
  • 项目类别:
Metalloenzymes and metal homeostasis
金属酶和金属稳态
  • 批准号:
    9894812
  • 财政年份:
    2016
  • 资助金额:
    $ 34.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了