Methods to Identify, Validate & Interpret GWAS Loci in Multi-ethnic Meta-analysis
识别、验证方法
基本信息
- 批准号:10291183
- 负责人:
- 金额:$ 57.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2022-08-09
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeArchitectureBehaviorBiologyBlood PressureCardiovascular DiseasesCollaborationsComplexComplex Genetic TraitComputer softwareDataData AnalysesData SetDetectionDevelopmentEnvironmental ExposureEuropeanFrequenciesGeneticGenetic ModelsGenetic ResearchGenetic studyGenomicsGenotypeGoalsHeritabilityHeterogeneityHuman GeneticsIndividualJointsLinkage DisequilibriumLipidsMalignant NeoplasmsMeasurementMeta-AnalysisMethodologyMethodsModelingModernizationNon-Insulin-Dependent Diabetes MellitusParticipantPatternPerformancePhenotypePopulationPrevention strategyPrivacyProbabilityReproducibilityResearchResolutionRespiration DisordersRisk FactorsSamplingSeriesSignal TransductionSmokingSoftware ToolsSpeedStatistical MethodsTrainingVariantaddictionbasecausal variantclinical translationcohortcostdrinkingflexibilitygenetic architecturegenetic variantgenome wide association studyhuman diseaseimprovedindexinginnovationmodifiable riskmulti-ethnicnovel strategiesnovel therapeuticspublic health relevancerare variantrisk predictionsoftware developmentsoftware infrastructurestatisticstooltrait
项目摘要
ABSTRACT
Large scale genetic datasets have revolutionized human genetic research. In the past decade, genome-wide
association studies have identified numerous genetic variants associated with various complex traits. These
discoveries have informed new biology and led to novel therapeutics. Yet, most studies focused on European
samples. As the next step, consortia efforts have begun to aggregate datasets from diverse non-European
populations. Most of these studies seek to aggregate summary association statistics and perform meta-analysis
instead of aggregating individual level data, which are easier to implement, equally powerful and more protective
for participants’ privacy. There are many new analytical challenges for trans-ethnic meta-analysis, which
demands new methodology development. In this application, we propose to develop a series of novel
approaches to understand the genetic architecture of complex traits in trans-ethnic meta-analysis. Specifically,
we will develop methods to assess reproducibility of identified GWAS signals (Aim 1). We will improve models
of genetic effect heterogeneity in trans-ethnic meta-analysis, in order to improve the power for association
analysis (Aim 2). We will also adapt the model to enhance the identification of causal variants (Aim 3) and
improve risk predictions (Aim 4). Finally, we will develop innovative software architectures to implement these
methods and make them scalable for meta-analysis of sequencing age (Aim 5). To accomplish these research
goals, we assembled a synergistic research team with leading expertise in complex trait genetics, statistical
genetics and large scale computation. In the past few years, our research team developed software tools that
are being used in hundreds of genetic studies. The team also got extensively involved in applied data analysis.
We will continue our existing collaborations, and team up with leaders in the GSCAN, GIANT, GLGC, T2D and
ICBP consortia to help advance the trans-ethnic analyses for smoking and drinking addiction, anthropometric
traits, lipids levels, type II diabetes and blood pressures. Together, these datasets consist of >20 million
phenotypic measurements on >5 million individuals. These collaborations will greatly advance our understanding
on the genetic architecture, facilitate clinical translation and also maximize the impact of our developed
methodologies.
抽象的
大规模的遗传数据集彻底改变了人类遗传研究。在过去的十年中,全基因组
关联研究已经确定了许多与各种复杂性状相关的遗传变异。这些
发现已经了解了新的生物学,并导致了新的疗法。然而,大多数研究都集中在欧洲
样品。下一步,财团的努力已经开始汇总来自潜水员非欧洲的数据集
人群。这些研究中的大多数旨在汇总关联统计并进行荟萃分析
而不是汇总更易于实施的个人级别数据,同样强大且受到保护
对于参与者的隐私。跨种族荟萃分析有许多新的分析挑战,这是
需要新的方法论开发。在此应用中,我们建议开发一系列新颖
了解跨种族荟萃分析中复杂性状的遗传结构的方法。具体来说,
我们将开发评估已识别GWAS信号的可重复性的方法(AIM 1)。我们将改善模型
跨种族荟萃分析中遗传效应异质性,以提高关联的能力
分析(目标2)。我们还将调整模型以增强因果变体的识别(AIM 3)和
改善风险预测(目标4)。最后,我们将开发创新的软件体系结构来实施这些架构
方法并使它们可用于测序年龄的荟萃分析(AIM 5)。完成这些研究
目标,我们组建了一个具有复杂特征遗传学的领先专业知识的协同研究团队,统计
遗传学和大规模计算。在过去的几年中,我们的研究团队开发了软件工具
用于数百个遗传研究。该团队还广泛参与了应用数据分析。
我们将继续我们的现有合作,并与GSCAN,GIANT,GLGC,T2D和
ICBP财团有助于推进吸烟和饮酒成瘾的跨种族分析,人体测量学
特征,脂质水平,II型糖尿病和血压。这些数据集共同包含> 2000万
> 500万个人的表型测量。这些合作将使我们的理解很大
关于遗传结构,促进临床翻译,并最大程度地发挥我们发达的影响
方法论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dajiang Liu其他文献
Dajiang Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dajiang Liu', 18)}}的其他基金
Integrative genomic and geospatial analysis of insurance claim, biobank and GWAS summary statistics for complex traits
保险索赔的综合基因组和地理空间分析、生物库和复杂性状的 GWAS 汇总统计
- 批准号:
10688692 - 财政年份:2022
- 资助金额:
$ 57.57万 - 项目类别:
Methods to maximize the utility of common fund functional genomic data in multi-ethnic genetic studies
在多种族遗传研究中最大限度地利用共同基金功能基因组数据的方法
- 批准号:
10357165 - 财政年份:2021
- 资助金额:
$ 57.57万 - 项目类别:
Tools for integrative genomics and disease association study for the X chromosome
X 染色体综合基因组学和疾病关联研究的工具
- 批准号:
10224236 - 财政年份:2018
- 资助金额:
$ 57.57万 - 项目类别:
Methods to Unveil the Genetic Architecture for Nicotine Dependence via NGS data
通过 NGS 数据揭示尼古丁依赖性遗传结构的方法
- 批准号:
8954632 - 财政年份:2015
- 资助金额:
$ 57.57万 - 项目类别:
Methods to Unveil the Genetic Architecture for Nicotine Dependence via NGS data
通过 NGS 数据揭示尼古丁依赖性遗传结构的方法
- 批准号:
9145160 - 财政年份:2015
- 资助金额:
$ 57.57万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 57.57万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 57.57万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 57.57万 - 项目类别:
Cellular mechanisms for the degeneration and aging of human rotator cuff tears
人类肩袖撕裂变性和衰老的细胞机制
- 批准号:
10648672 - 财政年份:2023
- 资助金额:
$ 57.57万 - 项目类别:
2/3 Akili: Phenotypic and genetic characterization of ADHD in Kenya and South Africa
2/3 Akili:肯尼亚和南非 ADHD 的表型和遗传特征
- 批准号:
10637187 - 财政年份:2023
- 资助金额:
$ 57.57万 - 项目类别: