Brain phantom generation by generative adversarial net (GAN) for AI-based emission tomography
通过生成对抗网络 (GAN) 生成脑模型,用于基于人工智能的发射断层扫描
基本信息
- 批准号:10293006
- 负责人:
- 金额:$ 8.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-10 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary
Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are useful
functional medical imaging techniques that can be performed to evaluate brain functions such as regional
cerebral perfusion and neurotransmission. The spatial resolution of reconstruction for PET is usually 3-6 mm,
and for SPECT is only 1-2 cm. Motivated by the latest advances in artificial intelligence (AI)/machine learning
(ML) and its successful application to MRI and CT, it is highly desirable to develop an ML-based system for
PET/SPECT cerebral image reconstruction (one of our specific interests is Parkinson disease) to achieve higher
resolution and lower noise than using conventional approaches. However, to develop such a learning system,
ground-truth data (accurate images, used as the labels) that guide the training are unavailable from the the real
world. Published ML systems for PET imaging have used reconstructed images from conventional methods as
the label to guide the training. As a result, the goal was only targeted to improve reconstruction speed, rather
than improving the image quality. Since the quality of reconstructed image by ML system cannot exceed the
guiding images, the performance of ML system cannot surpass conventional methods. Therefore, in this project,
we propose a two-year project that will use conditional generative adversarial networks (GAN) to
generate digital 2-D human brain phantoms, which will be highly similar to real human brains. The
generated phantoms will serve as the (precise) ground-truth data to develop ML-based PET/SPECT
reconstruction systems (our future research). The generated phantoms will contain an activity image and an
attenuation map. Hence, results from this work can be used for simulating brain PET or SPECT examinations
for various neurological disorders, and neural network can be trained with known ground truth. In addition,
designing ML systems often relies on large amounts of data, but it is not easy to access data from a large number
of patients in the US for specific medical research (mature ML systems developed for computer vision and image
classification often involve images on the million level for training). Existing ML systems developed for MRI, CT,
and PET imaging often merely uses a few tens of patient data for training and even less data to validate.
Therefore, those systems are high-likely overfitted to the data used in training. With the generation system
proposed from this project, we can produce a large phantom population to avoid the overfitting problem
when design the AI image-reconstruction system. Once the GAN system is successfully developed, it can be
easily transplanted to phantom generation for the AI-based CT and AI-based MRI. The method is also potentially
extendable to generate phantom populations of torso, abdomen, and extremities for simulating cardiac imaging,
tumor imaging, etc.
项目摘要
正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)很有用
可以执行的功能医学成像技术来评估大脑功能,例如区域
脑灌注和神经传递。 PET重建的空间分辨率通常为3-6 mm,
SPECT仅为1-2厘米。受人工智能(AI)/机器学习的最新进展的动机
(ML)及其成功应用于MRI和CT,非常需要开发基于ML的系统
PET/SPECT脑图像重建(我们的特定兴趣之一是帕金森病)以实现更高的
分辨率和较低的噪声比使用常规方法。但是,要开发这样的学习系统,
从真实的角度来指导训练的地面真相数据(准确的图像,用作标签)。
世界。发布的用于PET成像的ML系统已使用常规方法重建的图像作为
指导培训的标签。结果,目标仅针对提高重建速度,而是
而不是提高图像质量。由于ML系统重建图像的质量不能超过
指导图像,ML系统的性能无法超越常规方法。因此,在这个项目中,
我们提出了一个为期两年的项目,该项目将使用有条件的生成对抗网络(GAN)
产生数字二维人脑幻像,这将与真实的人类大脑高度相似。这
生成的幻影将用作(精确的)基础真实数据,以开发基于ML的PET/SPECT
重建系统(我们的未来研究)。生成的幻影将包含活动图像和一个
衰减图。因此,这项工作的结果可用于模拟脑宠物或SPECT检查
对于各种神经系统疾病,可以用已知的地面真理训练神经网络。此外,
设计ML系统通常依赖大量数据,但是从大量访问数据并不容易
美国的患者进行特定的医学研究(成熟的ML系统用于计算机视觉和图像
分类通常涉及在百万级上进行培训的图像)。现有为MRI,CT开发的ML系统
PET成像通常仅使用几十个患者数据进行培训,甚至更少的数据来验证。
因此,这些系统很可能过多地适合培训中使用的数据。与发电系统
该项目提出的建议,我们可以生产大量的幻影人群以避免过度拟合问题
设计AI图像重建系统时。一旦成功开发了GAN系统,就可以
轻松地将基于AI的CT和基于AI的MRI移植到幻影生成。该方法也可能是
可扩展以产生躯干,腹部和四肢的幻影种群,以模拟心脏成像,
肿瘤成像等
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Wenyi Shao的其他基金
Brain phantom generation by generative adversarial net (GAN) for AI-based emission tomography
通过生成对抗网络 (GAN) 生成脑模型,用于基于人工智能的发射断层扫描
- 批准号:1046696710466967
- 财政年份:2021
- 资助金额:$ 8.19万$ 8.19万
- 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:1073425810734258
- 财政年份:2023
- 资助金额:$ 8.19万$ 8.19万
- 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:1072683410726834
- 财政年份:2023
- 资助金额:$ 8.19万$ 8.19万
- 项目类别:
Ovarian Function Among Samoan Women with Obesity
萨摩亚肥胖女性的卵巢功能
- 批准号:1060579010605790
- 财政年份:2023
- 资助金额:$ 8.19万$ 8.19万
- 项目类别:
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:1083629810836298
- 财政年份:2023
- 资助金额:$ 8.19万$ 8.19万
- 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:1063653610636536
- 财政年份:2023
- 资助金额:$ 8.19万$ 8.19万
- 项目类别: