Brain phantom generation by generative adversarial net (GAN) for AI-based emission tomography
通过生成对抗网络 (GAN) 生成脑模型,用于基于人工智能的发射断层扫描
基本信息
- 批准号:10293006
- 负责人:
- 金额:$ 8.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-10 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAddressAffectArtificial IntelligenceBiological MarkersBrainCancer BiologyCardiacCerebrumClassificationCollimatorComputer AnalysisComputer Vision SystemsCorpus striatum structureDataDevelopmentDiagnosisDiscipline of Nuclear MedicineDiseaseEducational StatusEffectivenessFutureGenerationsGoalsHumanImageImaging TechniquesInterventionInvestigationLabelLearningLimb structureMachine LearningMagnetic Resonance ImagingMapsMedicalMedical ImagingMedical ResearchMethodsMonitorMorphologic artifactsNerve DegenerationNoiseOrganOutputParkinson DiseasePatientsPerformancePerfusionPhysicsPopulationPositron-Emission TomographyProceduresPublishingResearchResolutionSchemeSpeedSystemTimeTrainingTraining SupportTransplantationUnited StatesVascular DiseasesWaterWidthWorkattenuationbasebonecancer imagingdata accessdesigndigitaldigital imagingdopaminergic neuronheart imagingimage guidedimage reconstructionimprovedinterestnervous system disorderneural networkneurotransmissionputamenradiotracerreconstructionreduce symptomssimulationsingle photon emission computed tomographytomographytooluptakevirtual
项目摘要
Project Summary
Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are useful
functional medical imaging techniques that can be performed to evaluate brain functions such as regional
cerebral perfusion and neurotransmission. The spatial resolution of reconstruction for PET is usually 3-6 mm,
and for SPECT is only 1-2 cm. Motivated by the latest advances in artificial intelligence (AI)/machine learning
(ML) and its successful application to MRI and CT, it is highly desirable to develop an ML-based system for
PET/SPECT cerebral image reconstruction (one of our specific interests is Parkinson disease) to achieve higher
resolution and lower noise than using conventional approaches. However, to develop such a learning system,
ground-truth data (accurate images, used as the labels) that guide the training are unavailable from the the real
world. Published ML systems for PET imaging have used reconstructed images from conventional methods as
the label to guide the training. As a result, the goal was only targeted to improve reconstruction speed, rather
than improving the image quality. Since the quality of reconstructed image by ML system cannot exceed the
guiding images, the performance of ML system cannot surpass conventional methods. Therefore, in this project,
we propose a two-year project that will use conditional generative adversarial networks (GAN) to
generate digital 2-D human brain phantoms, which will be highly similar to real human brains. The
generated phantoms will serve as the (precise) ground-truth data to develop ML-based PET/SPECT
reconstruction systems (our future research). The generated phantoms will contain an activity image and an
attenuation map. Hence, results from this work can be used for simulating brain PET or SPECT examinations
for various neurological disorders, and neural network can be trained with known ground truth. In addition,
designing ML systems often relies on large amounts of data, but it is not easy to access data from a large number
of patients in the US for specific medical research (mature ML systems developed for computer vision and image
classification often involve images on the million level for training). Existing ML systems developed for MRI, CT,
and PET imaging often merely uses a few tens of patient data for training and even less data to validate.
Therefore, those systems are high-likely overfitted to the data used in training. With the generation system
proposed from this project, we can produce a large phantom population to avoid the overfitting problem
when design the AI image-reconstruction system. Once the GAN system is successfully developed, it can be
easily transplanted to phantom generation for the AI-based CT and AI-based MRI. The method is also potentially
extendable to generate phantom populations of torso, abdomen, and extremities for simulating cardiac imaging,
tumor imaging, etc.
项目概要
正电子发射断层扫描 (PET) 和单光子发射计算机断层扫描 (SPECT) 很有用
功能医学成像技术可用于评估大脑功能,例如区域性功能
脑灌注和神经传递。 PET重建的空间分辨率通常为3-6毫米,
SPECT 仅为 1-2 厘米。受到人工智能 (AI)/机器学习最新进展的推动
(ML)及其在 MRI 和 CT 中的成功应用,非常需要开发一种基于 ML 的系统
PET/SPECT 脑图像重建(我们的具体兴趣之一是帕金森病)以实现更高的
与传统方法相比,分辨率和噪声更低。然而,要开发这样一个学习系统,
指导训练的地面实况数据(准确的图像,用作标签)无法从真实数据中获得
世界。已发布的用于 PET 成像的 ML 系统使用了传统方法的重建图像:
指导训练的标签。因此,目标只是提高重建速度,而不是
而不是提高图像质量。由于ML系统重建图像的质量不能超过
引导图像,ML系统的性能无法超越传统方法。因此,在这个项目中,
我们提出了一个为期两年的项目,该项目将使用条件生成对抗网络(GAN)
生成数字二维人脑模型,与真实的人脑高度相似。这
生成的模型将作为(精确的)真实数据来开发基于 ML 的 PET/SPECT
重建系统(我们未来的研究)。生成的模型将包含一个活动图像和一个
衰减图。因此,这项工作的结果可用于模拟大脑 PET 或 SPECT 检查
对于各种神经系统疾病,神经网络可以用已知的事实进行训练。此外,
设计 ML 系统通常依赖于大量数据,但访问大量数据并不容易
美国进行特定医学研究的患者数量(为计算机视觉和图像开发的成熟机器学习系统)
分类通常涉及百万级图像进行训练)。现有的 ML 系统是为 MRI、CT、
PET 成像通常仅使用几十个患者数据进行训练,甚至更少的数据进行验证。
因此,这些系统很可能过度拟合训练中使用的数据。随着生成系统
从这个项目中提出,我们可以产生大量的幻像群体来避免过度拟合问题
在设计AI图像重建系统时。一旦GAN系统开发成功,就可以
轻松移植到基于 AI 的 CT 和基于 AI 的 MRI 的体模生成。该方法也有潜力
可扩展以生成躯干、腹部和四肢的模型群来模拟心脏成像,
肿瘤影像学等
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenyi Shao其他文献
Wenyi Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenyi Shao', 18)}}的其他基金
Brain phantom generation by generative adversarial net (GAN) for AI-based emission tomography
通过生成对抗网络 (GAN) 生成脑模型,用于基于人工智能的发射断层扫描
- 批准号:
10466967 - 财政年份:2021
- 资助金额:
$ 8.19万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:
10726834 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
Ovarian Function Among Samoan Women with Obesity
萨摩亚肥胖女性的卵巢功能
- 批准号:
10605790 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:
10836298 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 8.19万 - 项目类别: