How Does 3' UTR Secondary Structure Program mRNA Transport in Myelination?
3 UTR 二级结构如何控制髓鞘形成中的 mRNA 运输?
基本信息
- 批准号:10288149
- 负责人:
- 金额:$ 43.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3&apos Untranslated RegionsAcuteAddressAntisense OligonucleotidesAutologousAxonBasic ScienceBindingBiochemicalBiologyCarrier ProteinsCatalogsCell Differentiation processCell membraneCellsChemicalsCodeCollaborationsCommunicable DiseasesCouplingDataData SetDemyelinating DiseasesDevelopmentDiseaseExplosionFluorescent in Situ HybridizationFoundationsFunctional disorderFundingGoalsGoldImageIn VitroKnowledgeLibrariesMaintenanceMalignant NeoplasmsMammalian CellMapsMedicineMessenger RNAMethodsMicroscopyModalityMolecular BiologyMultiple SclerosisMultiplexed Analysis of Projections by SequencingMutagenesisMutateMutationMyelinMyelin Basic ProteinsMyelin SheathNatural regenerationNeuraxisNeurobiologyNeuronsNeurosciences ResearchOligodendrogliaPatientsPharmaceutical PreparationsPrevention strategyProcessProductionProtocols documentationRNARNA SequencesRNA TransportRNA vaccineRattusRegulationReporterResearchResearch Project GrantsRoleSpecific qualifier valueSpinal Muscular AtrophyStructureTechniquesTechnologyTestingTherapeuticTranscriptTranslationsVariantdesigndimethyl sulfateexperimental studygain of functionin vivoinsightleukodystrophymRNA Expressionmouse modelmutantmyelinationnervous system disordernew therapeutic targetnext generation sequencingnovelnovel therapeutic interventionnovel therapeuticsoligodendrocyte precursorprogramsregenerativeremyelinationsingle moleculestructural biologysuccesstargeted treatmenttherapeutic targettranscriptometranscriptome sequencingwhite matter
项目摘要
PROJECT SUMMARY
Recent successes in RNA medicine, including the first-in-class Spinraza treatment for spinal muscular atrophy,
demonstrate RNA gain-of-function as a novel therapeutic modality for previously intractable neurological disease
and raise the prospect of similar treatments for demyelinating diseases. Such treatments would target
oligodendrocytes – the myelinating cells of the central nervous system (CNS) – for a novel and specific strategy
for preventative or regenerative RNA medicine. To create myelin, oligodendrocytes extend cell projections that
encircle adjacent axons. These concentrically wrapped layers of cell membrane undergo a process called
compaction to generate mature myelin. Critical to this process is the localization of a subset of the
oligodendrocyte transcriptome to the nascent myelin sheath for local translation. By more than an order of
magnitude, the myelin basic protein (MBP) mRNA is the most highly abundant and most highly transported
protein-coding transcript in oligodendrocytes, and the drug-induced regulation of its expression, processing, and
transport could potentially augment myelination by these cells. Unfortunately, testing the viability of such a
strategy is not currently possible due to a lack of understanding of the RNA molecular and structural biology that
underlies MBP mRNA transport in oligodendrocytes. In partnership with oligodendrocyte biology collaborators,
we have recently begun to address this knowledge gap. We have applied newly invented chemical probing and
RNA sequencing technologies to reveal a previously unappreciated repertoire of secondary structures in the
MBP 3’ untranslated region (3’ UTR, a region that is known to be necessary for MBP mRNA transport) as well
as a catalog of hundreds of other highly transported oligodendrocyte mRNAs. These data suggest features that
may be targeted or mimicked with antisense oligonucleotides (ASOs) to modulate MBP mRNA function but need
to be rigorously tested. Here, we propose to complete this exploratory research by (1) testing the functional
importance of MBP 3’ UTR secondary structures with in-cell mutate-rescue experiments recently invented by our
lab and validating these structure-transport relationships through targeted structure perturbation or stabilization
facilitated by anti-sense oligonucleotides, and (2) designing a minimal transport-inducing 3’ UTR using insights
from high-throughput structure determination and structure-function characterization of all highly transported
transcripts in oligodendrocytes. We will evaluate success in both aims through multiple orthogonal methods,
including next-generation sequencing, biochemical structure determination, and quantitative single-molecule
RNA imaging that we have collaboratively developed for the study of oligodendrocyte projections. The proposed
basic science research establishes a previously missing RNA structural biology foundation needed for the design
and testing of Spinraza-like ASO therapeutics. This treatment modality could structurally stabilize the 3’ UTRs of
myelin-related transcripts to increase their transport and translation in oligodendrocytes, thereby increasing
myelin production. Such a drug may be critical in the treatment of otherwise incurable demyelinating diseases.
项目摘要
RNA医学的最新成功,包括用于脊柱肌肉萎缩的第一类Spinraza治疗
证明RNA功能获得作为以前棘手的神经系统疾病的新型热方式
并提高类似治疗脱髓鞘疾病的前景。这样的治疗将针对
少突胶质细胞 - 中枢神经系统(CNS)的髓细胞 - 用于一种新颖而特定的策略
用于预防或再生RNA医学。为了创建髓磷脂,少突胶质细胞扩展了细胞项目
包围相邻的轴突。这些重复包裹的细胞膜层经历了一个称为的过程
压实以产生成熟的髓鞘。这个过程至关重要的是该子集的本地化
向新生髓鞘的少突胶质细胞转录组进行局部翻译。超过一个订单
大小,髓磷脂碱性蛋白(MBP)mRNA是最丰富且运输最高的mRNA
少突胶质细胞中的蛋白质编码转录本,以及药物诱导的调节其表达,加工和
运输可能会通过这些细胞增强髓鞘形成。不幸的是,测试了这样的生存能力
由于缺乏对RNA分子和结构生物学的了解,目前不可能进行策略
少突胶质细胞中的MBP mRNA转运基础。与少突胶细胞生物学合作者合作,
我们最近开始解决这一知识差距。我们应用了新发明的化学探测和
RNA测序技术揭示了先前未批准的二级结构的曲目
MBP 3'未翻译区(3'UTR,一个已知的MBP mRNA传输所必需的区域)
作为数百个其他高度运输的少突胶质细胞mRNA的目录。这些数据表明功能
可以针对或模仿反义寡核苷酸(ASO)来调节MBP mRNA功能,但需要
进行严格测试。在这里,我们建议通过(1)测试功能来完成这项探索性研究
MBP 3’UTR二级结构具有我们最近发明的细胞内突变 - 敏感性实验的重要性
实验室并通过靶向结构扰动或稳定来验证这些结构传输关系
由反义寡核苷酸促进,(2)使用见解设计最小的传输3'UTR
根据所有高度运输的高通量结构的确定和结构功能表征
少突胶质细胞中的转录本。我们将通过多种正交方法评估两个目标的成功,
包括下一代测序,生化结构确定和定量单分子
RNA成像我们已经为少突胶质细胞预测而进行了协作开发。提议
基础科学研究建立了设计的先前缺失的RNA结构生物学基础
和类似脊柱样的ASO治疗的测试。这种治疗方式可以在结构上稳定3'的UTR
髓鞘相关的成绩单以增加少突胶质细胞的运输和翻译,从而增加
髓磷脂的产生。这种药物对于治疗原本无法治愈的脱髓鞘疾病可能至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John B Zuchero其他文献
John B Zuchero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John B Zuchero', 18)}}的其他基金
New cell biology tools to study myelin development, dynamics, and disease
研究髓磷脂发育、动力学和疾病的新细胞生物学工具
- 批准号:
10649184 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
How Does Actin Disassembly Drive Myelin Wrapping?
肌动蛋白分解如何驱动髓磷脂包裹?
- 批准号:
10302789 - 财政年份:2021
- 资助金额:
$ 43.3万 - 项目类别:
How Does Actin Disassembly Drive Myelin Wrapping?
肌动蛋白分解如何驱动髓磷脂包裹?
- 批准号:
10099950 - 财政年份:2020
- 资助金额:
$ 43.3万 - 项目类别:
How Does Actin Disassembly Drive Myelin Wrapping?
肌动蛋白分解如何驱动髓磷脂包裹?
- 批准号:
10475669 - 财政年份:2020
- 资助金额:
$ 43.3万 - 项目类别:
How Does Actin Disassembly Drive Myelin Wrapping?
肌动蛋白分解如何驱动髓磷脂包裹?
- 批准号:
10269007 - 财政年份:2020
- 资助金额:
$ 43.3万 - 项目类别:
How Does Actin Disassembly Drive Myelin Wrapping?
肌动蛋白分解如何驱动髓磷脂包裹?
- 批准号:
10474732 - 财政年份:2020
- 资助金额:
$ 43.3万 - 项目类别:
相似海外基金
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
R21 MPI microRNA directed therapy for treating early stage pancreatic cancer
R21 MPI microRNA 定向疗法治疗早期胰腺癌
- 批准号:
10577609 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
IL-17A mRNA-targeted oligonucleotide therapeutics in Idiopathic Pulmonary Fibrosis (IPF)
IL-17A mRNA 靶向寡核苷酸治疗特发性肺纤维化 (IPF)
- 批准号:
10761365 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别: