Multi-target suppression of pro-inflammatory cytokines using engineered targeted ribonucleases
使用工程化靶向核糖核酸酶多靶点抑制促炎细胞因子
基本信息
- 批准号:10282169
- 负责人:
- 金额:$ 42.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2023-07-14
- 项目状态:已结题
- 来源:
- 关键词:3&apos Untranslated RegionsAddressAnimal ModelAnti-Inflammatory AgentsBindingBiologicalCCL2 geneCCL3 geneCOVID-19CXCL1 geneCell modelCellsChimera organismChimeric ProteinsCleaved cellCytokine SignalingCytokine SuppressionDevelopmentDiseaseElementsEndoribonucleasesEngineeringEpithelial CellsExhibitsFamilyFunctional disorderFutureGene ExpressionGenesGenetic TranscriptionGoalsGuide RNAHumanIL8 geneIndividualInflammationInflammatoryInflammatory ResponseInfluenzaInterleukin-1 alphaInterleukin-1 betaInterleukin-18Interleukin-6IonsKineticsLinkLungMeasuresMediatingMessenger RNAMetalsMethodsMitogen-Activated Protein KinasesModalityModificationOrganPathway interactionsPharmaceutical PreparationsPhosphorylationPilot ProjectsPopulationProcessProductionPropertyProtein Binding DomainProtein EngineeringProteinsRNARNA DegradationRNA InterferenceRNA Recognition MotifRNA SequencesResearchRespiratory FailureRibonucleasesSepsisSeriesShockSignal TransductionSolubilitySpecificitySubstrate SpecificitySyndromeSystemTIS11 proteinTNF geneTechnologyTestingTherapeuticViremiaVirus DiseasesZinc Fingersairway epitheliumbasecell typechemokinecombinatorialcytokinecytokine release syndromedesignendonucleaseexperimental studyhigh rewardhigh riskimprovedin vitro activityinnovationinterestlung injurymRNA DecaymRNA Transcript Degradationmacrophagenovel therapeutic interventionnovel therapeuticspatient populationprogramsprototyperespiratory virusscreeningsuccesssystemic inflammatory responsetargeted nucleasestargeted treatmenttooltranscriptome
项目摘要
Cytokine storm syndrome (CSS) is a massive and sustained production of pro-inflammatory cytokines and
chemokines triggered by sepsis and severe viral infections including COVID-19 and influenza. This hyper-
elevation of cytokine signaling drives the localized and ultimately systemic inflammation responsible for the
severe and potentially lethal organ damage associated with this syndrome. There are currently no effective
drugs to treat CSS, making development of new therapeutic strategies a top priority. In particular, the limited
success observed with approaches targeting individual cytokines indicates that methods are needed that can
suppress expression or activity of multiple cytokines simultaneously. To address this need, the goal of this
exploratory, high-risk/high-reward R21 proposal is to develop a zinc finger-directed RNA-cleaving agent to
suppress pro-inflammatory mRNA subpopulations in cells. Our prototypes link the tandem zinc finger (TZF)
domain from tristetraprolin (TTP) to an endoribonuclease domain. This RNA targeting module was selected
because it recognizes RNA sequences found in the 3'-untranslated regions of many cytokine and chemokine
mRNAs. In cells, chimeric TZF-RNase proteins are expected to bind and rapidly degrade these mRNA
substrates, but our design will also allow substrate specificity to be systematically modified.
This proposal is aimed at providing the “proof of concept” that TZF-RNase chimeras can function as a
deliverable, guided RNA degradation system in cells to suppress a pro-inflammatory gene expression program
and production/secretion of associated cytokines. First, we will construct a series of TZF-RNase prototypes
and optimize for yield, solubility, and metal ion coordination before functionally screening for sequence-specific
RNA cleavage activity in vitro and targeted suppression of candidate pro-inflammatory cytokine mRNAs in cells
by accelerating mRNA decay. Second, we will express our optimal TZF-RNase prototype in primary cells
relevant to CSS and measure transcriptome-wide effects on mRNA levels and mRNA decay kinetics, followed
by effects on cytokine secretion profiles from these cell models. In parallel, we will test methods for delivering
TZF-RNase protein into cells. Successful completion of this pilot project will establish proof-of-principle that: (i)
an engineered targeted nuclease can post-transcriptionally suppress expression and secretion of multiple pro-
inflammatory cytokines associated with CSS, and (ii) that this targeted nuclease can be delivered to and
functional in CSS-relevant cell types. Several future applications of this technology are also envisioned,
including: (i) discovery tools for characterizing RNA-mediated biological pathways, and (ii) expanding the
specificity of the TZF-RNase platform by altering its RNA-targeting specificity. Strategies to broaden the scope
include the iterative or combinatorial modification of the TZF moiety and substitution of other RNA-binding
domains to `guide' the chimeric protein, creating a tunable family of targeted ribonucleases with long-term
impact.
细胞因子风暴综合征(CSS)是促炎细胞因子和
由败血症和严重病毒感染引发的趋化因子,包括Covid-19和Intalcene。这个超级
细胞因子信号传导的升高驱动局部炎症,最终导致系统性炎症
与该综合征有关的严重且潜在的致命器官损伤。目前没有效力
治疗CSS的药物,使新的治疗策略的发展成为重中之重。特别是有限
用靶向单个细胞因子的方法观察到的成功表明需要方法
简单地抑制多种细胞因子的表达或活性。为了满足这一需求,目的是
探索性,高风险/高回报R21提案是将锌指的RNA定向剂开发为
抑制细胞中的促炎性mRNA亚群。我们的原型连接串联锌指(TZF)
从Tristetraprolin(TTP)到核糖核酸酶域的域。选择了此RNA靶向模块
因为它识别在许多细胞因子和趋化因子的3'-非翻译区域中发现的RNA序列
mrnas。在细胞中,嵌合TZF-RNase蛋白有望结合并迅速降解这些mRNA
底物,但我们的设计还可以系统地修改底物特异性。
该建议旨在提供“概念证明”,即TZF-RNase Chimeras可以作为一个
细胞中可交付的,引导的RNA降解系统抑制促炎基因表达程序
以及相关细胞因子的生产/分泌。首先,我们将构建一系列TZF-RNASE原型
并在功能筛选序列特异性之前优化产量,溶解度和金属离子配位
RNA的裂解活性在体外和靶向抑制细胞中候选促炎细胞因子mRNA
通过加速mRNA衰变。其次,我们将在原代细胞中表达我们的最佳TZF-RNase原型
与CSS相关并测量整个转录组对mRNA水平和mRNA衰变动力学的影响,遵循
通过对这些细胞模型的细胞因子分泌谱的影响。同时,我们将测试交付的方法
TZF-RNASE蛋白进入细胞。该试点项目的成功完成将确定:(i)
工程的靶向核酸酶可以在转录后抑制多个促值的表达和分泌
与CSS相关的炎性细胞因子,以及(ii)该靶向核酸酶可以递送到和
与CSS相关的细胞类型中的功能。还设想了该技术的几个未来应用,
包括:(i)用于表征RNA介导的生物途径的发现工具,以及(ii)扩展
TZF-RNase平台的特异性通过改变其靶向RNA的特异性。扩大范围的策略
包括TZF部分的迭代或组合修饰以及其他RNA结合的替代
用于“指导”嵌合蛋白的域,形成一个可调的靶向色带菌群家族
影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SARAH L MICHEL其他文献
SARAH L MICHEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SARAH L MICHEL', 18)}}的其他基金
Development of Advanced Analytical Methods for the Characterization of Iron Carbohydrate Complex - Ferric Derisomaltose
开发表征碳水化合物铁复合物 - 麦芽糖铁的先进分析方法
- 批准号:
10491846 - 财政年份:2021
- 资助金额:
$ 42.49万 - 项目类别:
Development of Advanced Analytical Methods for the Characterization of Iron Carbohydrate Complex - Ferric Derisomaltose
开发表征碳水化合物铁复合物 - 麦芽糖铁的先进分析方法
- 批准号:
10378954 - 财政年份:2021
- 资助金额:
$ 42.49万 - 项目类别:
Structural Characterization of ZF2 of PIE-1 in C.elegans
线虫 PIE-1 ZF2 的结构特征
- 批准号:
6406371 - 财政年份:2001
- 资助金额:
$ 42.49万 - 项目类别:
Structural Characterization of ZF2 of PIE-1 in C.elegans
线虫 PIE-1 ZF2 的结构特征
- 批准号:
6607181 - 财政年份:2001
- 资助金额:
$ 42.49万 - 项目类别:
相似海外基金
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Genetic and pharmacologic elimination of myotonia from myotonic dystrophy type 1
通过遗传和药物消除 1 型强直性肌营养不良引起的肌强直
- 批准号:
10750357 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Development of Utrophin Site Blocking Oligos (SBOs) to Treat Duchenne Muscular Dystrophy (DMD)
开发 Utropin 位点封闭寡核苷酸 (SBO) 来治疗杜氏肌营养不良症 (DMD)
- 批准号:
10678195 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别: