Multi-target suppression of pro-inflammatory cytokines using engineered targeted ribonucleases
使用工程化靶向核糖核酸酶多靶点抑制促炎细胞因子
基本信息
- 批准号:10282169
- 负责人:
- 金额:$ 42.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2023-07-14
- 项目状态:已结题
- 来源:
- 关键词:3&apos Untranslated RegionsAddressAnimal ModelAnti-Inflammatory AgentsBindingBiologicalCCL2 geneCCL3 geneCOVID-19CXCL1 geneCell modelCellsChimera organismChimeric ProteinsCleaved cellCytokine SignalingCytokine SuppressionDevelopmentDiseaseElementsEndoribonucleasesEngineeringEpithelial CellsExhibitsFamilyFunctional disorderFutureGene ExpressionGenesGenetic TranscriptionGoalsGuide RNAHumanIL8 geneIndividualInflammationInflammatoryInflammatory ResponseInfluenzaInterleukin-1 alphaInterleukin-1 betaInterleukin-18Interleukin-6IonsKineticsLinkLungMeasuresMediatingMessenger RNAMetalsMethodsMitogen-Activated Protein KinasesModalityModificationOrganPathway interactionsPharmaceutical PreparationsPhosphorylationPilot ProjectsPopulationProcessProductionPropertyProtein Binding DomainProtein EngineeringProteinsRNARNA DegradationRNA InterferenceRNA Recognition MotifRNA SequencesResearchRespiratory FailureRibonucleasesSepsisSeriesShockSignal TransductionSolubilitySpecificitySubstrate SpecificitySyndromeSystemTIS11 proteinTNF geneTechnologyTestingTherapeuticViremiaVirus DiseasesZinc Fingersairway epitheliumbasecell typechemokinecombinatorialcytokinecytokine release syndromedesignendonucleaseexperimental studyhigh rewardhigh riskimprovedin vitro activityinnovationinterestlung injurymRNA DecaymRNA Transcript Degradationmacrophagenovel therapeutic interventionnovel therapeuticspatient populationprogramsprototyperespiratory virusscreeningsuccesssystemic inflammatory responsetargeted nucleasestargeted treatmenttooltranscriptome
项目摘要
Cytokine storm syndrome (CSS) is a massive and sustained production of pro-inflammatory cytokines and
chemokines triggered by sepsis and severe viral infections including COVID-19 and influenza. This hyper-
elevation of cytokine signaling drives the localized and ultimately systemic inflammation responsible for the
severe and potentially lethal organ damage associated with this syndrome. There are currently no effective
drugs to treat CSS, making development of new therapeutic strategies a top priority. In particular, the limited
success observed with approaches targeting individual cytokines indicates that methods are needed that can
suppress expression or activity of multiple cytokines simultaneously. To address this need, the goal of this
exploratory, high-risk/high-reward R21 proposal is to develop a zinc finger-directed RNA-cleaving agent to
suppress pro-inflammatory mRNA subpopulations in cells. Our prototypes link the tandem zinc finger (TZF)
domain from tristetraprolin (TTP) to an endoribonuclease domain. This RNA targeting module was selected
because it recognizes RNA sequences found in the 3'-untranslated regions of many cytokine and chemokine
mRNAs. In cells, chimeric TZF-RNase proteins are expected to bind and rapidly degrade these mRNA
substrates, but our design will also allow substrate specificity to be systematically modified.
This proposal is aimed at providing the “proof of concept” that TZF-RNase chimeras can function as a
deliverable, guided RNA degradation system in cells to suppress a pro-inflammatory gene expression program
and production/secretion of associated cytokines. First, we will construct a series of TZF-RNase prototypes
and optimize for yield, solubility, and metal ion coordination before functionally screening for sequence-specific
RNA cleavage activity in vitro and targeted suppression of candidate pro-inflammatory cytokine mRNAs in cells
by accelerating mRNA decay. Second, we will express our optimal TZF-RNase prototype in primary cells
relevant to CSS and measure transcriptome-wide effects on mRNA levels and mRNA decay kinetics, followed
by effects on cytokine secretion profiles from these cell models. In parallel, we will test methods for delivering
TZF-RNase protein into cells. Successful completion of this pilot project will establish proof-of-principle that: (i)
an engineered targeted nuclease can post-transcriptionally suppress expression and secretion of multiple pro-
inflammatory cytokines associated with CSS, and (ii) that this targeted nuclease can be delivered to and
functional in CSS-relevant cell types. Several future applications of this technology are also envisioned,
including: (i) discovery tools for characterizing RNA-mediated biological pathways, and (ii) expanding the
specificity of the TZF-RNase platform by altering its RNA-targeting specificity. Strategies to broaden the scope
include the iterative or combinatorial modification of the TZF moiety and substitution of other RNA-binding
domains to `guide' the chimeric protein, creating a tunable family of targeted ribonucleases with long-term
impact.
细胞因子风暴综合征 (CSS) 是促炎性细胞因子和促炎性细胞因子的大量持续产生
由败血症和严重病毒感染(包括 COVID-19 和流感)引发的趋化因子。
细胞因子信号传导的升高会驱动局部炎症并最终导致全身炎症
目前尚无与此综合征相关的严重且可能致命的器官损伤。
治疗CSS的药物,使得开发新的治疗策略成为当务之急,特别是在有限的情况下。
针对个体细胞因子的方法所观察到的成功表明,需要能够
同时抑制多种细胞因子的表达或活性为了满足这种需要,这是本发明的目标。
探索性、高风险/高回报的 R21 提案是开发一种锌指导向的 RNA 切割剂
抑制细胞中的促炎 mRNA 亚群。我们的原型连接串联锌指 (TZF)。
选择从三四脯氨酸 (TTP) 结构域到核糖核酸内切酶结构域的 RNA 靶向模块。
因为它可以识别许多细胞因子和趋化因子 3'-非翻译区中的 RNA 序列
在细胞中,嵌合 TZF-RNase 蛋白有望结合并快速降解这些 mRNA。
底物,但我们的设计也将允许系统地修改底物特异性。
该提案旨在提供 TZF-RNase 嵌合体可以作为
细胞内可传递、引导的 RNA 降解系统,可抑制促炎基因表达程序
首先,我们将构建一系列 TZF-RNase 原型。
并在功能筛选序列特异性之前优化产量、溶解度和金属离子配位
体外 RNA 裂解活性和细胞内候选促炎细胞因子 mRNA 的靶向抑制
其次,我们将在原代细胞中表达我们的最佳 TZF-RNase 原型。
与 CSS 相关并测量转录组范围内对 mRNA 水平和 mRNA 衰减动力学的影响,随后
同时,我们将测试递送方法。
TZF-RNase 蛋白进入细胞。该试点项目的成功完成将建立以下原理验证:(i)
工程化的靶向核酸酶可以转录后抑制多种前体的表达和分泌
与 CSS 相关的炎症细胞因子,以及 (ii) 这种靶向核酸酶可以被递送至
还设想了该技术在 CSS 相关细胞类型中的几种未来应用。
包括:(i) 用于表征 RNA 介导的生物途径的发现工具,以及 (ii) 扩展
通过改变 RNA 靶向策略来扩大 TZF-RNase 平台的特异性。
包括 TZF 部分的迭代或组合修饰以及其他 RNA 结合的取代
结构域“引导”嵌合蛋白,创建具有长期作用的靶向核糖核酸酶可调家族
影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SARAH L MICHEL其他文献
SARAH L MICHEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SARAH L MICHEL', 18)}}的其他基金
Development of Advanced Analytical Methods for the Characterization of Iron Carbohydrate Complex - Ferric Derisomaltose
开发表征碳水化合物铁复合物 - 麦芽糖铁的先进分析方法
- 批准号:
10491846 - 财政年份:2021
- 资助金额:
$ 42.49万 - 项目类别:
Development of Advanced Analytical Methods for the Characterization of Iron Carbohydrate Complex - Ferric Derisomaltose
开发表征碳水化合物铁复合物 - 麦芽糖铁的先进分析方法
- 批准号:
10378954 - 财政年份:2021
- 资助金额:
$ 42.49万 - 项目类别:
Structural Characterization of ZF2 of PIE-1 in C.elegans
线虫 PIE-1 ZF2 的结构特征
- 批准号:
6406371 - 财政年份:2001
- 资助金额:
$ 42.49万 - 项目类别:
Structural Characterization of ZF2 of PIE-1 in C.elegans
线虫 PIE-1 ZF2 的结构特征
- 批准号:
6607181 - 财政年份:2001
- 资助金额:
$ 42.49万 - 项目类别:
相似海外基金
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Genetic and pharmacologic elimination of myotonia from myotonic dystrophy type 1
通过遗传和药物消除 1 型强直性肌营养不良引起的肌强直
- 批准号:
10750357 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别:
Development of Utrophin Site Blocking Oligos (SBOs) to Treat Duchenne Muscular Dystrophy (DMD)
开发 Utropin 位点封闭寡核苷酸 (SBO) 来治疗杜氏肌营养不良症 (DMD)
- 批准号:
10678195 - 财政年份:2023
- 资助金额:
$ 42.49万 - 项目类别: