Predicting Progression of Chronic Kidney Disease in Sickle Cell Anemia Using Machine Learning Models (PREMIER)
使用机器学习模型预测镰状细胞性贫血慢性肾病的进展 (PREMIER)
基本信息
- 批准号:10280257
- 负责人:
- 金额:$ 70.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:APOL1 geneAddressAdultAffectAffinityAfrican AmericanAlbuminuriaAngiotensin ReceptorAngiotensin-Converting Enzyme InhibitorsBiological AvailabilityChronic Kidney FailureEarly identificationFunctional disorderGeneral PopulationGlomerular Filtration RateHemoglobinHemolysisHemolytic AnemiaHigh PrevalenceImmune responseIndividualInflammatory ResponseInjuryInjury to KidneyIschemic StrokeKidneyKidney DiseasesLife ExpectancyMachine LearningMeasuresMediatingModelingMorbidity - disease rateMulticenter StudiesNitric OxideOrganOxidative StressOxygenPathogenesisPathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPopulationPrevalencePulmonary HypertensionRenal functionReportingRiskRisk FactorsSeveritiesSickle CellSickle Cell AnemiaSickle HemoglobinTestingUrineVariantVascular Diseasesbasefunctional declinehigh riskhydroxyureaimprovedmodifiable riskmortalitymortality risknovelpatient populationpolymerizationpredictive modelingpreventprospectiveprotective effectrandomized controlled studyrenal damagesickling inhibitorsmall moleculestandard of caretargeted treatment
项目摘要
ABSTRACT
Sickle cell disease (SCD) is characterized by a vasculopathy affecting multiple end organs, with complications
including chronic kidney disease (CKD). Albuminuria, an early measure of glomerular injury, is common in
SCD and predicts progressive kidney disease. Kidney function decline is faster in SCD patients than in the
general African American population. The prevalence of rapid decline in SCD is 3-fold higher than in the
general population. Furthermore, high-risk APOL1 variants are associated with an increased risk of
albuminuria and progression of CKD in SCD. Kidney disease, regardless of severity, and rapid eGFR decline
are associated with increased mortality in SCD. As such, early identification of patients at risk for progression
of CKD is important to address potentially modifiable risk factors, slow eGFR decline and reduce mortality.
Despite the high prevalence of CKD and its contribution to increased morbidity and mortality, available
treatments for SCD-related kidney disease remain limited. Although angiotensin converting enzyme inhibitors
(ACE-I), angiotensin receptor blockers (ARBs), and hydroxyurea decrease albuminuria in short-term studies,
their benefits in preventing or slowing progressive loss of kidney function in SCD remain undefined.
We have recently reported that machine learning (ML) models can identify patients at high risk for rapid decline
in kidney function. Further, higher hemoglobin concentration is also an independent predictor of decreased
odds of rapid kidney function decline. With the contribution of intravascular hemolysis to the pathophysiology of
SCD-related glomerulopathy, voxelotor, a small molecule which modifies sickle hemoglobin oxygen affinity and
improves sickle RBC survival, may decrease glomerular injury and slow the progression of CKD in individuals
with SCD.
In this application, we propose the conduct of a prospective, multicenter study to build a ML-based predictive
model for progression of CKD in adults with SCD. Furthermore, in individuals predicted to be at risk for rapid
decline in kidney function, based on the presence of persistent albuminuria (urine ACR ≥ 100 mg/g), we will
evaluate the effect of voxelotor on albuminuria, rapid decline in kidney function and progression of CKD.
With advances in the understanding of the pathophysiology of SCD and its complications, combined with an
increasing number of approved drug therapies, early identification of patients at risk for progressive kidney
disease and subsequent increased risk of death is necessary to modify known risk factors, initiate targeted
therapies and possibly increase life expectancy. Further, with the known contribution of hemolytic anemia to
the pathogenesis of SCD-related glomerulopathy and progressive kidney disease, drugs that decrease
hemolysis are likely to be beneficial in preventing and/or slowing the progression of kidney disease in this
patient population.
抽象的
镰状细胞病 (SCD) 的特点是影响多个终末器官的血管病变,并伴有并发症
包括慢性肾病 (CKD),蛋白尿是肾小球损伤的早期指标,在以下疾病中很常见。
SCD 并预测进行性肾脏疾病,SCD 患者的肾功能下降速度比正常人更快。
一般非裔美国人群体中 SCD 快速下降的患病率是普通人的 3 倍。
此外,高风险 APOL1 变异与罹患癌症的风险增加有关。
SCD 中的蛋白尿和 CKD 进展,无论严重程度如何,以及 eGFR 快速下降。
与 SCD 死亡率增加相关,因此,早期识别有进展风险的患者。
CKD 的研究对于解决潜在的可改变的危险因素、减缓 eGFR 下降和降低死亡率非常重要。
尽管 CKD 患病率很高且导致发病率和死亡率增加,但可
尽管血管紧张素转换酶抑制剂对 SCD 相关肾脏疾病的治疗仍然有限。
(ACE-I)、血管紧张素受体阻滞剂(ARB)和羟基脲在短期研究中可减少白蛋白尿,
它们在预防或减缓 SCD 肾功能进行性丧失方面的益处仍不清楚。
我们最近报道,机器学习 (ML) 模型可以识别快速衰退的高风险患者
此外,较高的血红蛋白浓度也是肾功能下降的独立预测因素。
肾功能快速下降的可能性与血管内溶血的病理生理学的贡献有关。
SCD 相关肾小球病,voxelotor,一种改变镰状血红蛋白氧亲和力的小分子
提高镰状红细胞存活率,可能减少肾小球损伤并减缓个体 CKD 的进展
与SCD。
在此应用中,我们建议进行一项前瞻性多中心研究,以构建基于机器学习的预测模型
患有 SCD 的成人中 CKD 进展的模型此外,在预测有快速风险的个体中。
肾功能下降,基于持续性白蛋白尿的存在(尿液 ACR ≥ 100 mg/g),我们将
评估 voxelotor 对蛋白尿、肾功能快速下降和 CKD 进展的影响。
随着对 SCD 病理生理学及其并发症的认识不断进步,结合
批准的药物疗法数量不断增加,及早识别有进展性肾病风险的患者
疾病和随后增加的死亡风险对于改变已知的危险因素、启动有针对性的
此外,已知溶血性贫血会导致死亡。
SCD 相关肾小球病和进行性肾病的发病机制,减少药物
溶血可能有助于预防和/或减缓肾病的进展
患者群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth I Ataga其他文献
Kenneth I Ataga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth I Ataga', 18)}}的其他基金
Predicting Progression of Chronic Kidney Disease in Sickle Cell Anemia Using Machine Learning Models (PREMIER)
使用机器学习模型预测镰状细胞性贫血慢性肾病的进展 (PREMIER)
- 批准号:
10676823 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
THE ASSOCIATION OF BIOMARKERS OF ENDOTHELIAL FUNCTION WITH PROSPECTIVE CHANGES IN KIDNEY FUNCTION IN SICKLE CELL ANEMIA
镰状细胞性贫血中内皮功能生物标志物与肾功能预期变化的关联
- 批准号:
10241267 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
THE ASSOCIATION OF BIOMARKERS OF ENDOTHELIAL FUNCTION WITH PROSPECTIVE CHANGES IN KIDNEY FUNCTION IN SICKLE CELL ANEMIA
镰状细胞性贫血中内皮功能生物标志物与肾功能预期变化的关联
- 批准号:
9372894 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
Targeted Anticoagulant Therapy for Sickle Cell Disease
镰状细胞病的靶向抗凝治疗
- 批准号:
8467839 - 财政年份:2013
- 资助金额:
$ 70.53万 - 项目类别:
Targeted Anticoagulant Therapy for Sickle Cell Disease
镰状细胞病的靶向抗凝治疗
- 批准号:
8722604 - 财政年份:2013
- 资助金额:
$ 70.53万 - 项目类别:
Targeted Anticoagulant Therapy for Sickle Cell Disease
镰状细胞病的靶向抗凝治疗
- 批准号:
8857241 - 财政年份:2013
- 资助金额:
$ 70.53万 - 项目类别:
CLINICAL TRIAL: IMPACTS TRIAL: INVESTIGATION OF THE MODULATION OF PHOSPHOLIPASE
临床试验:影响试验:磷脂酶调节的研究
- 批准号:
7716901 - 财政年份:2008
- 资助金额:
$ 70.53万 - 项目类别:
CLINICAL TRIAL: PHASE III, ICA-17043 WITH OR WITHOUT HYDROXYUREA IN SICKLE CELL
临床试验:III 期,ICA-17043 在镰状细胞中含或不含羟基脲
- 批准号:
7716822 - 财政年份:2008
- 资助金额:
$ 70.53万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 70.53万 - 项目类别:
Genetic testing to Address Renal Disease Disparities Across the U.S. (GUARDD-US) - Administrative Supplement
通过基因检测解决全美肾脏疾病差异问题 (GUARDD-US) - 行政补充
- 批准号:
10620537 - 财政年份:2022
- 资助金额:
$ 70.53万 - 项目类别:
Etiology of Persistent Microalbuminuria in Nigeria
尼日利亚持续性微量白蛋白尿的病因学
- 批准号:
10432130 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Predicting Progression of Chronic Kidney Disease in Sickle Cell Anemia Using Machine Learning Models (PREMIER)
使用机器学习模型预测镰状细胞性贫血慢性肾病的进展 (PREMIER)
- 批准号:
10676823 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别: