Mechanistic Basis of Cardiac Laminopathy
心脏核纤层病的机制基础
基本信息
- 批准号:10279393
- 负责人:
- 金额:$ 73.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAffectBiological AssayBiological ModelsBiologyBundlingCardiacCardiac MyocytesCardiomyopathiesCell NucleusCellsComplexContractsCytoskeletonDNA DamageDataDefectDilated CardiomyopathyDiseaseFHOD3 geneFeedbackFibroblastsFunctional disorderGene AbnormalityGene ExpressionGene MutationGenesGoalsHeartHeart DiseasesHumanInheritedLamin Type ALeadLifeMAPK3 geneMaintenanceMeasuresMechanical StressMechanicsMediatingMicrofilamentsMovementMusMutationMyocardial dysfunctionNuclearNuclear EnvelopeNuclear LaminaNuclear Outer MembraneNuclear StructurePathogenesisPathogenicityPathologyPatientsPhenotypePhosphorylationPhysiologicalPhysiologyPositioning AttributeProcessProteinsResearchRoleRuptureSarcomeresSignal PathwaySignal TransductionStressStructural ProteinTestingVariantWild Type Mouseactin 2checkpoint inhibitiondesignenv Gene Productsfamilial dilated cardiomyopathyfundamental researchin vivoinduced pluripotent stem celllive cell imagingmechanical forcemouse modelnovelpreventresponsesensor
项目摘要
PROJECT SUMMARY
Mutations in the lamin A/C gene (LMNA) encoding structural proteins of the nuclear lamina are responsible for
up to ten percent of cases of inherited dilated cardiomyopathy. The disease is often referred to as cardiac
laminopathy. Experimental evidence partially supports various pathogenic mechanisms of how defects in nuclear
structural proteins cause cardiomyopathy, including that they lead to abnormalities in cell mechanical stability,
dysregulation of gene expression and altered cell signaling. However, there is no unifying hypothesis integrating
these defective processes and explaining exactly how they lead to cardiomyocyte damage and dysfunction. We
recently found a surprising relationship between aberrant extracellular signal-regulated kinase 1/2 (ERK1/2)
signaling and altered nuclear positioning in cardiac laminopathy. This has led us to hypothesize the existence of
a mechanic checkpoint in which alterations in the nuclear lamina upregulate ERK1/2 activity, which causes
mispositioning of the nucleus by phosphorylating and inactivating the actin bundling activity of the formin
homology domain-containing protein (FHOD). Inactivation of FHOD prevents the linker of nucleoskeleton and
cytoskeleton (LINC) complex, which spans the inner and outer nuclear membranes and connects to actin
filaments, to mediate nuclear positioning. Normally, the mechanical checkpoint acts to prevent excessive force
from being applied to the nucleus in contracting cardiomyocytes. However, with permanent alterations in nuclear
structure resulting from LMNA mutations, the persistently activated checkpoint becomes maladaptive, resulting
in abnormal nuclear positioning, nuclear envelope rupture, DNA damage and defects in sarcomere function. This
Project is designed to prove the nuclear mechanical checkpoint hypothesis and determine its role in the
pathogenesis of cardiac laminopathy. In Aim 1, we will examine how activation of the mechanical checkpoint for
nuclear positioning alters cardiomyocyte biology. We will directly measure force on the nucleus using a nesprin-
2 actin tension sensor. As recent data suggest that the nucleus contributes to normal sarcomere, we will test the
hypothesis that persistent mechanical checkpoint activation and nuclear mispositioning leads to defective
sarcomere assembly and function in cardiomyocytes. In Aim 3, we will determine how altering the mechanical
checkpoint affects the heart in vivo. We will test if expressing a phosphomimetic FOHD variant (checkpoint
activation) in the heart induces cardiomyopathy in wild type mouse hearts and if a non-phosphorylatable variant
(checkpoint inactivation) ameliorates pathology in a mouse model of cardiac laminopathy. Proving the existence
of a novel nuclear mechanical checkpoint and establishing its role in the pathogenesis of cardiomyopathy caused
by LMNA mutations will shift research directions in the field and potentially lead to new treatments for this life-
threatening inherited heart disease.
项目摘要
编码核层的结构蛋白的层粘连蛋白A/C基因(LMNA)的突变是负责
多达十%的遗传性心肌病病例。该疾病通常被称为心脏
椎板病。实验证据部分支持核中缺陷的各种致病机制
结构蛋白会引起心肌病,包括它们导致细胞机械稳定性异常,
基因表达的失调和细胞信号改变。但是,没有统一的假设整合
这些有缺陷的过程,并准确地解释了它们如何导致心肌细胞损伤和功能障碍。我们
最近发现异常的细胞外信号调节激酶1/2(ERK1/2)之间存在惊人的关系。
心脏椎板病中的信号传导和核位置改变。这使我们假设
一个机械检查点,其中核薄片的改变会导致ERK1/2活性
通过磷酸化和灭活形式的肌动蛋白捆绑活性,对细胞核的定位错误
含同源域的蛋白质(FHOD)。 FHOD的失活阻止了核骨骼的接头和
细胞骨架(LINC)复合物,跨越内部和外核膜并连接到肌动蛋白
细丝,介导核定位。通常,机械检查点可以防止过多的力
从在收缩心肌细胞中应用于细胞核。但是,随着核的永久改变
LMNA突变导致的结构,持续激活的检查点变为不良适应性,导致
在异常的核位置,核包膜破裂,DNA损伤和肌节功能中的缺陷。这
项目旨在证明核机械检查点假设并确定其在
心脏椎板病的发病机理。在AIM 1中,我们将研究如何激活机械检查点
核定位改变了心肌细胞生物学。我们将使用内氏蛋白酶直接测量核上的力
2肌动蛋白张力传感器。由于最近的数据表明核有助于正常的肌节,我们将测试
持续的机械检查点激活和核位置的假设导致有缺陷
心肌细胞中的肌节组件和功能。在AIM 3中,我们将确定如何改变机械
检查点影响体内心脏。我们将测试是否表达磷酸化FOHD变体(检查点
在心脏中激活)在野生型小鼠心脏中诱导心肌病,如果是不可磷酸的变体
(检查点灭活)在心脏椎板病小鼠模型中改善病理。证明存在
新型的核机械检查点,并确定其在心肌病的发病机理中的作用
通过LMNA突变将改变该领域的研究方向,并有可能导致这种生命的新治疗方法
威胁性遗传性心脏病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregg G Gundersen其他文献
Gregg G Gundersen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregg G Gundersen', 18)}}的其他基金
Cytoskeleton, Nucleus and Integrin Recycling in Cell Migration
细胞迁移中的细胞骨架、细胞核和整合素回收
- 批准号:
10396505 - 财政年份:2020
- 资助金额:
$ 73.72万 - 项目类别:
Cytoskeleton, Nucleus and Integrin Recycling in Cell Migration
细胞迁移中的细胞骨架、细胞核和整合素回收
- 批准号:
10613943 - 财政年份:2020
- 资助金额:
$ 73.72万 - 项目类别:
Cytoskeleton, Nucleus and Integrin Recycling in Cell Migration
细胞迁移中的细胞骨架、细胞核和整合素回收
- 批准号:
10799051 - 财政年份:2020
- 资助金额:
$ 73.72万 - 项目类别:
Nucleoskeleton-Cytoskeleton Connections and Cell Polarity in Aging
衰老过程中的核骨架-细胞骨架连接和细胞极性
- 批准号:
10289402 - 财政年份:2019
- 资助金额:
$ 73.72万 - 项目类别:
Nucleoskeleton-Cytoskeleton Connections and Cell Polarity in Aging
衰老过程中的核骨架-细胞骨架连接和细胞极性
- 批准号:
9982166 - 财政年份:2019
- 资助金额:
$ 73.72万 - 项目类别:
Nucleoskeleton-Cytoskeleton Connections and Cell Polarity in Aging
衰老过程中的核骨架-细胞骨架连接和细胞极性
- 批准号:
10153650 - 财政年份:2019
- 资助金额:
$ 73.72万 - 项目类别:
Nucleoskeleton-Cytoskeleton Connections and Cell Polarity in Aging
衰老过程中的核骨架-细胞骨架连接和细胞极性
- 批准号:
10394870 - 财政年份:2019
- 资助金额:
$ 73.72万 - 项目类别:
Integrin Recycling and Adhesion Formation in Cell Migration
细胞迁移中整合素的回收和粘附形成
- 批准号:
9765849 - 财政年份:2019
- 资助金额:
$ 73.72万 - 项目类别:
Nucleoskeleton-Cytoskeleton Connections and Cell Polarity in Aging
衰老过程中的核骨架-细胞骨架连接和细胞极性
- 批准号:
10619511 - 财政年份:2019
- 资助金额:
$ 73.72万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Regulation of GluN2B-NMDA Receptors by Interactions with the Actin Cytoskeleton
通过与肌动蛋白细胞骨架相互作用调节 GluN2B-NMDA 受体
- 批准号:
10606121 - 财政年份:2023
- 资助金额:
$ 73.72万 - 项目类别:
Thick and Thin Filament Dysfunction in Obese Heart Failure with Preserved Ejection Fraction
射血分数保留的肥胖性心力衰竭的粗细丝功能障碍
- 批准号:
10678204 - 财政年份:2023
- 资助金额:
$ 73.72万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 73.72万 - 项目类别:
Fibrosis, inflammation, and osteophyte formation in post-traumatic osteoarthritis
创伤后骨关节炎中的纤维化、炎症和骨赘形成
- 批准号:
10570315 - 财政年份:2023
- 资助金额:
$ 73.72万 - 项目类别: