A pan-cancer atlas of driver mutations in >100,000 patients based on a hypothesis-driven combined computational and experimental approach
基于假设驱动的计算和实验相结合的方法,绘制了超过 100,000 名患者的驱动突变泛癌图谱
基本信息
- 批准号:10276520
- 负责人:
- 金额:$ 13.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-16 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdvanced Malignant NeoplasmAffectAtlasesBindingBiologicalBiologyCRISPR interferenceCancer PatientCellsChromatin Remodeling FactorClinicalClinical MarkersClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexComputer softwareComputing MethodologiesDataData SetDevelopmentDevelopment PlansDiagnosticDrug TargetingEnvironmentEstrogensEventFoundationsFutureGenesGenetics and MedicineGenetsGenomeGenomicsGoalsImmunotherapyIndividualInstitutesLeadLeadershipMalignant NeoplasmsManualsMapsMedicineMentorsMethodsMissionModelingMutationOncogenicOpen Reading FramesOutcomePathologic MutagenesisPathway interactionsPatientsProteinsPublic HealthPublicationsResearchRoleScientistSignal TransductionSolidSomatic MutationStatistical AlgorithmStatistical MethodsStatistical ModelsStructureSystemTechniquesTestingThe Cancer Genome AtlasTrainingUnited States National Institutes of HealthUntranslated RNAbasecancer gene expressioncancer genomecancer genomicscancer survivalcancer therapycareer developmentclinical careclinical predictorscomputerized toolsdriver mutationexomeexperienceexperimental studygenome editinggenome sequencinggenomic biomarkerimprovedinnovationinterdisciplinary approachmachine learning methodmalignant breast neoplasmmathematical methodsmathematical modelmedical schoolsmeetingsmid-career facultynew therapeutic targetnovelnovel therapeuticsopen sourceprecision oncologyprofessorpromoterskillssymposiumtargeted treatmenttooltranscription factortumortumorigenesiswhole genome
项目摘要
PROJECT SUMMARY
Most mutations in cancer genomes are random passengers that do not contribute to oncogenesis, whereas
only a few are drivers critical for tumor development. Existing cancer therapies interfere directly with the
biology of drivers, which have been characterized extensively in protein-coding regions but remain largely
uncharacterized outside coding regions. Most tumors harbor a combination of several driver mutations, but it is
unclear how multiple events are coordinated in tumor development. The applicant's long-term goal is to
advance cancer medicine by identifying new drug targets and clinical markers for therapies in complex
pathways. The overall objectives in this application are to (i) reveal the biological role of noncoding drivers, (ii)
capture the coordination of driver events at a pathway level, and (iii) profile the effects of noncoding drivers on
cancer gene expression. The central hypothesis is that refining the biological assumptions of computational
methods will enhance their statistical power. The rationale is that defining the biology of noncoding drivers and
their combination will offer a strong foundation for new therapies. The central hypothesis will be tested in three
specific aims: 1) Determine the impact of integrating biological mechanisms into statistical methods for
localizing noncoding drivers; 2) Evaluate mechanisms by which promoter mutations increase the expression of
cancer genes; and 3) Assess the coordination of multiple driver events in tumor development. The proposed
research is innovative, in the applicant's opinion, because it will allow for an unbiased characterization of driver
mutations across the entire genome, address the limitations of existing cancer genomics methods in noncoding
regions, and facilitate the usage of statistical concepts for non-computational scientists. The proposal is
significant because it will enable a systematic interrogation of noncoding drivers and their combinations.
Ultimately, this will pave the way for new targeted therapies. Dr. Dietlein will be mentored by Dr. Van Allen, an
Associate Professor of Medicine at Harvard Medical School with considerable experience in cancer genomics
methods that require statistical innovation for clinically focused questions. His co-mentor, Dr. Meyerson, is a
Professor of Genetics and Medicine at Harvard Medical School and a pioneer in developing targeted therapies
based on driver mutations. Additional support will be provided by 4 computational and 2 experimental
collaborators. Dr. Dietlein's training plan contains four goals, which will be pursued by hands-on experiential
training, conference meetings, and structured coursework: 1) Acquire computational skills for interpreting
drivers in noncoding regions; 2) Experimental techniques to validate driver mutations by CRISPR interference;
3) Develop professional leadership skills for interdisciplinary teams of scientists; and 4) Use machine-learning
methods for interpreting drivers in cancer genomes. Dana-Farber, Harvard Medical School, and the Broad
Institute provide an ideal environment to execute the applicant's career development plan.
项目摘要
癌症基因组中的大多数突变是随机的乘客,不会导致肿瘤发生,而
只有少数对于肿瘤发育至关重要。现有的癌症疗法直接干扰
驱动因素的生物学,这些驱动因素在蛋白质编码区域具有广泛的特征,但在很大程度上仍然
未表征的外部编码区域。大多数肿瘤都有几种驱动突变的组合,但它是
尚不清楚如何在肿瘤发展中协调多个事件。申请人的长期目标是
通过确定复杂疗法的新药物靶标和临床标记来预先癌症医学
途径。本应用程序中的总体目标是(i)揭示非编码驱动因素的生物学作用,(ii)
在途径级别捕获驾驶员事件的协调,(iii)介绍了非编码驱动程序对
癌基因表达。中心假设是完善计算的生物学假设
方法将增强其统计能力。理由是定义非编码驱动因素的生物学和
他们的结合将为新疗法提供良好的基础。中央假设将在三个
具体目的:1)确定将生物学机制整合到统计方法中的影响
定位非编码驱动程序; 2)评估启动子突变增加表达的机制
癌基因; 3)评估肿瘤发育中多个驾驶员事件的协调。提议
申请人认为,研究具有创新性,因为它将允许驾驶员的公正表征
整个基因组的突变,解决了现有的癌症基因组方法在非编码中的局限性
地区,并促进非竞争科学家的统计概念的使用。该提议是
意义重大,因为它将能够对非编码驱动程序及其组合进行系统的询问。
最终,这将为新的目标疗法铺平道路。 Dietlein博士将由Van Allen博士指导
哈佛医学院医学副教授在癌症基因组学方面拥有丰富的经验
需要统计创新的方法来解决临床上的问题。他的联合学者Meyerson博士是
哈佛医学院的遗传学和医学教授,以及开发目标疗法的先驱
基于驾驶员突变。 4个计算和2个实验将提供额外的支持
合作者。 Dietlein博士的培训计划包含四个目标,这将由动手体验追求
培训,会议会议和结构化课程:1)获得解释的计算技能
非编码地区的驾驶员; 2)通过CRISPR干扰验证驾驶员突变的实验技术;
3)为科学家的跨学科团队发展专业领导能力; 4)使用机器学习
解释癌症基因组驱动因素的方法。达娜·法伯(Dana-Farber),哈佛医学院和广阔的
研究所提供了执行申请人职业发展计划的理想环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Felix Dietlein其他文献
Felix Dietlein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Felix Dietlein', 18)}}的其他基金
Defining the universal genomic language of hallmarks in tumor development
定义肿瘤发展标志的通用基因组语言
- 批准号:
10681670 - 财政年份:2023
- 资助金额:
$ 13.32万 - 项目类别:
A pan-cancer atlas of driver mutations in >100,000 patients based on a hypothesis-driven combined computational and experimental approach
基于假设驱动的计算和实验相结合的方法,绘制了超过 100,000 名患者的驱动突变泛癌图谱
- 批准号:
10620844 - 财政年份:2021
- 资助金额:
$ 13.32万 - 项目类别:
A pan-cancer atlas of driver mutations in >100,000 patients based on a hypothesis-driven combined computational and experimental approach
基于假设驱动的计算和实验相结合的方法,绘制了超过 100,000 名患者的驱动突变泛癌图谱
- 批准号:
10617428 - 财政年份:2021
- 资助金额:
$ 13.32万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
TIER-PALLIATIVE CARE: A population-based care delivery model to match evolving patient needs and palliative care services for community-based patients with heart failure or cancer
分级姑息治疗:基于人群的护理提供模式,以满足不断变化的患者需求,并为社区心力衰竭或癌症患者提供姑息治疗服务
- 批准号:
10880994 - 财政年份:2023
- 资助金额:
$ 13.32万 - 项目类别:
Center for the Promotion of Cancer Health Equity (CePCHE)
癌症健康公平促进中心 (CePCHE)
- 批准号:
10557579 - 财政年份:2023
- 资助金额:
$ 13.32万 - 项目类别:
Multilevel factors associated with disparities in the use of targeted cancer therapies in Medicare
与医疗保险中靶向癌症治疗使用差异相关的多层次因素
- 批准号:
10830588 - 财政年份:2023
- 资助金额:
$ 13.32万 - 项目类别:
Artificial Intelligence powered virtual digital twins to construct and validate AI automated tools for safer MR-guided adaptive RT of abdominal cancers
人工智能支持虚拟数字双胞胎来构建和验证人工智能自动化工具,以实现更安全的 MR 引导的腹部癌症自适应放疗
- 批准号:
10736347 - 财政年份:2023
- 资助金额:
$ 13.32万 - 项目类别: