Small Area Estimation for State and Local Health Departments
州和地方卫生部门的小面积估计
基本信息
- 批准号:10275680
- 负责人:
- 金额:$ 23.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAge FactorsAmerican Heart AssociationAreaBayesian AnalysisBayesian MethodCase StudyCause of DeathCensusesCenters for Disease Control and Prevention (U.S.)Cessation of lifeCitiesCollaborationsCollectionComplexComputer softwareCountryDataData SetDeath RateDependenceDevelopmentDisease SurveillanceEquilibriumEthnic OriginEventFaceFrightFundingFutureGenderGeographic LocationsGeographyGoalsHealthHealth SurveysHeart DiseasesHouseholdIndividualInterventionInvestigationJointsLiteratureMethodologyMethodsModelingMultivariate AnalysisNeighborhoodsObesityOutcomePatternPeer ReviewPennsylvaniaPhiladelphiaPoliciesPopulationPrevalenceProductionPublic HealthPublicationsRaceReportingResearchResearch PersonnelResearch Project GrantsResolutionRisk FactorsSample SizeSmall-Area AnalysisSoftware ToolsSpecific qualifier valueStandardizationStatistical MethodsStatistical ModelsSubgroupSurveysTrainingWeights and MeasuresWorkbasedashboarddata spacedisease disparityexperiencehealth datahealth disparityimprovedinformation modelinsightlarge datasetsmenmortalitypreventracial disparitysexspatiotemporalstatisticstooltrend
项目摘要
PROJECT SUMMARY
Researchers at state and local health departments producing small area estimates often face a lose-lose situation.
On one hand, there is a wealth of evidence of racial disparities in many health outcomes and their risk factors,
but stratifying data by space and race (in addition to factors such as age and sex) only exacerbates the issues
associated with small area estimation by dividing a dataset with small sample sizes into a larger dataset with
smaller sample sizes. On the other hand, while the use of complex statistical models can be used to produce
more precise estimates from limited data, estimates produced by state and local health departments may be
treated as “official statistics” and thus these agencies may be reluctant to rely too heavily on statistical models for
fear of the bias they may introduce.
The objective of the proposed work is three-fold. Our first task will be to develop statistical models for the
analysis of multivariate spatial data that allow users to pre-specify an upper bound on the model's informativeness
— i.e., a measure of the weight given to the model as compared to the data when producing model-based
estimates. This work will build on the rich spatial statistics literature and recent research that provides insight into
how to quantify the informativeness of spatial models. We will extend this approach to the setting of multivariate
spatial data for the purposes of calculating demographic group-specific estimates and age-adjusted estimates.
Because we envision these methods being useful for researchers at state and local health departments, we
believe a thorough case study of our methods should be conducted to assess their suitability. To this end, our
second task will be to partner with the Philadelphia Department of Public Health and use the methods we've
developed to conduct a rigorous analysis of heart disease mortality and its risk factors in Philadelphia. This
analysis will produce yearly census tract-level estimates for rates of death due to several forms of heart disease
and estimates of the prevalence of key risk factors by age, gender, and race/ethnicity. The product of this research
will include a collection of reports — one focused on city-level trends and one focused on neighborhood-level
trends — an interactive online dashboard, and peer-reviewed publications that add context to our findings.
Finally, we recognize that few state and local health departments have staff who are trained in advanced
spatial Bayesian statistical methods, a fact that could serve as an impediment to the use of the methods we
develop. To remedy this, our third task will be to partner with the CDC-funded GIS Capacity Building Project,
which provides training in geospatial analyses to state and local health departments. This training begins by
introducing users to the ArcGIS software package and concludes with an overview of a tool created by the GIS
Capacity Building Project — the Rate Stabilizing Tool (RST). For this project, we will partner with the GIS Capacity
Building Project to incorporate the methods we developed into the RST in a “black-box” framework and provide
additional training on the use of spatial Bayesian methods in disease surveillance.
项目概要
州和地方卫生部门的研究人员进行小面积估计时常常面临双输的局面。
一方面,有大量证据表明许多健康结果及其风险因素存在种族差异,
但按空间和种族(除了年龄和性别等因素)对数据进行分层只会加剧问题
通过将小样本量的数据集划分为更大的数据集来与小区域估计相关联
另一方面,可以使用复杂的统计模型来产生较小的样本量。
根据有限的数据进行更精确的估计,州和地方卫生部门做出的估计可能是
被视为“官方统计数据”,因此这些机构可能不愿意过于依赖统计模型
担心他们可能引入偏见。
拟议工作的目标有三个:我们的首要任务是开发统计模型。
多元空间数据分析,允许用户预先指定模型信息量的上限
— 即,在生成基于模型时与数据相比给予模型的权重的度量
这项工作将建立在丰富的空间文献统计数据和最新研究的基础上,提供深入的见解。
如何量化空间模型的信息量我们将把这种方法扩展到多元的设置。
用于计算特定人口群体估计值和年龄调整估计值的空间数据。
因为我们预计这些方法对州和地方卫生部门的研究人员有用,所以我们
相信应该对我们的方法进行彻底的案例研究,以评估它们的适用性。
第二项任务是与费城公共卫生部合作并使用我们已经采取的方法
旨在对费城的心脏病死亡率及其危险因素进行严格分析。
分析将产生年度人口普查区层面的几种心脏病死亡率估计值
以及按年龄、性别和种族/民族划分的关键风险因素的患病率估计。
将包括一系列报告 - 一份侧重于城市层面的趋势,一份侧重于社区层面
趋势——交互式在线仪表板和同行评审的出版物,为我们的发现增添了背景。
最后,我们认识到,很少有州和地方卫生部门拥有接受过高级培训的工作人员。
空间贝叶斯统计方法,这一事实可能成为我们使用这些方法的障碍
为了解决这个问题,我们的第三项任务是与 CDC 资助的 GIS 能力建设项目合作,
向州和地方卫生部门提供地理空间分析培训。
向用户介绍 ArcGIS 软件包,最后概述 GIS 创建的工具
能力建设项目 — 速率稳定工具 (RST) 对于该项目,我们将与 GIS Capacity 合作。
构建项目,将我们开发的方法纳入“黑盒”框架中的 RST 中,并提供
关于在疾病监测中使用空间贝叶斯方法的额外培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harrison Quick其他文献
Harrison Quick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harrison Quick', 18)}}的其他基金
Small Area Estimation for State and Local Health Departments
州和地方卫生部门的小面积估计
- 批准号:
10668454 - 财政年份:2022
- 资助金额:
$ 23.64万 - 项目类别:
Small Area Estimation for State and Local Health Departments
州和地方卫生部门的小面积估计
- 批准号:
10443373 - 财政年份:2022
- 资助金额:
$ 23.64万 - 项目类别:
相似国自然基金
季节性因素影响下Wolbachia对具有年龄结构的蚊媒及蚊媒病的控制
- 批准号:11901247
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于年龄因素的白眉姬鹟繁殖对策调整与繁殖功效研究
- 批准号:31801976
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
儿童区分真实和虚幻的神经机制:年龄特征和影响因素
- 批准号:31700968
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
老龄化对牙周膜干细胞增殖及分化能力的影响及其机制研究
- 批准号:81500853
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
大鼠骨骼肌快肌纤维和慢肌纤维NMJ功能与年龄相关的变化及其影响因素分析
- 批准号:31460275
- 批准年份:2014
- 资助金额:48.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 23.64万 - 项目类别: