Resolving and understanding the genomic basis of heterogeneous complex traits and disease
解决和理解异质复杂性状和疾病的基因组基础
基本信息
- 批准号:10226291
- 负责人:
- 金额:$ 36.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAnimal ModelCardiomyopathiesCatalogsCell physiologyClinicalCollaborationsCollectionComplexCoronary ArteriosclerosisDataData CollectionDiseaseEating DisordersFemaleGastrointestinal DiseasesGenesGenomicsGenotypeHeterogeneityHumanIndividualInterventionKnowledgeLifeLinkMethodsModelingOutcomePathway interactionsPhenotypePhysiologicalPhysiologyPopulationPrevalenceSex BiasSystemTestingTissuesVariantadvanced diseaseanalogautism spectrum disorderclinical phenotypecomputational suitecomputer frameworkdisease diagnosisdisorder riskdisorder subtypegenetic variantgenomic datagenomic profilesgenomic signaturegenomic variationhuman diseasein vivoinsightmalenovelprecision medicinepregnancy disordersextrait
项目摘要
ABSTRACT
Over the last decade, numerous large-scale biomedical studies have helped catalog hundreds of genomic
variants and physiological-clinical phenotypes associated with a range of complex traits and diseases. These
catalogs are now exposing wide chasms in our understanding of the mechanistic relationships between
genomic variation, cellular processes, tissue function, and trait variation – knowledge that is crucial for
advancing disease diagnosis and intervention. We develop and apply computational data-driven approaches to
bridge these gaps and help resolve, understand, and tackle the heterogeneity of complex traits and diseases.
We are specifically focusing on three key questions: 1) Each disease is not a single well-defined condition. Can
we deconvolve complex disorders into subtypes defined by shared functional dysregulations, and characterize
novel genes/mechanisms underlying each subtype? 2) Most diseases vary in prevalence and impact between
males and females, and across life stages. Can we delineate the genomic basis of differences in tissue
physiology and disease between sexes and across ages? 3) Choosing the right in vivo system to study human
diseases is hard due to murky relationships between phenotypes/genes in humans and model species. Can
we systematically identify functionally `analogous' genes, phenotypes, and conditions in model organisms for
studying specific facets of complex traits/diseases? To address these critical questions across diseases, we
will develop a suite of computational frameworks that integrate genomic data collections, fragmented prior
knowledge, and individual-/population-level genotypes-phenotypes. We will use this approach to systematically
unravel genomic signatures, pathways, and networks that help characterize mechanistic subtypes, age/sex
biases, and cross-species analogs of a wide range of diseases. We have established collaborations for
experimentally following-up our predictions for specific test cases including autism, gastrointestinal disorder,
coronary artery disease, cardiomyopathies, abnormal pregnancy, and eating disorders. Together, this
concerted effort will help us gain insights into the multi-scale mechanisms underlying heterogeneous traits and
diseases. In the long-term, our frameworks and mechanistic insights will enable us to link an individual's
genomic profiles to a precise assessment of her/his physiological traits, disease risks, and clinical outcomes.
抽象的
在过去的十年中,许多大规模的生物医学研究有助于对数百种基因组进行分类
与一系列复杂性状和疾病相关的变体和物理临床表型。这些
目录现在在我们对我们对机械关系之间的机械关系中的广泛关注
基因组变异,细胞过程,组织功能和性状变异 - 知道这对于至关重要
推进疾病的诊断和干预。我们开发并应用计算数据驱动的方法
弥合这些差距,并有助于解决,理解和解决复杂性状和疾病的异质性。
我们特别关注三个关键问题:1)每种疾病不是一个明确定义的疾病。能
我们将复杂疾病解析为由共享功能失调定义的子类型,并表征
每个亚型的新基因/机制? 2)大多数疾病的患病率和影响
男性和女性,跨越生活阶段。我们可以描述组织差异的基因组基础吗
性别与跨年龄之间的生理和疾病? 3)选择正确的体内系统来研究人类
由于人类与模型物种的表型/基因之间的模糊关系,疾病很难。能
我们系统地识别功能“类似”基因,表型和模型生物的条件
研究复杂性状/疾病的特定方面?为了解决跨疾病的这些关键问题,我们
将开发一套计算框架,这些框架整合基因组数据收集,零散的先验
知识和个体/人群水平的基因型 - 表型。我们将使用这种方法来系统地
拆开基因组特征,途径和网络,有助于表征机械性亚型,年龄/性别
各种疾病的偏见和跨物种类似物。我们已经建立了合作
实验遵循我们对特定测试案例的预测,包括自闭症,胃肠道疾病,
冠状动脉疾病,心肌病,异常妊娠和饮食失调。一起,这个
一致的努力将有助于我们深入了解异质特征的多尺度机制和
疾病。从长远来看,我们的框架和机械见解将使我们能够联系个人的
基因组特征对其身体特征,疾病风险和临床结果进行精确评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arjun Krishnan其他文献
Arjun Krishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arjun Krishnan', 18)}}的其他基金
Mechanism-guided drug repurposing for host-directed therapy of infectious diseases using interpretable and integrative ML
使用可解释和集成的机器学习机制引导的药物再利用,用于针对宿主的传染病治疗
- 批准号:
10738676 - 财政年份:2022
- 资助金额:
$ 36.01万 - 项目类别:
Mechanism-guided drug repurposing for host-directed therapy of infectious diseases using interpretable and integrative ML
使用可解释和集成的机器学习机制引导的药物再利用,用于针对宿主的传染病治疗
- 批准号:
10442808 - 财政年份:2022
- 资助金额:
$ 36.01万 - 项目类别:
Mechanism-guided drug repurposing for host-directed therapy of infectious diseases using interpretable and integrative ML
使用可解释和集成的机器学习机制引导的药物再利用,用于针对宿主的传染病治疗
- 批准号:
10619589 - 财政年份:2022
- 资助金额:
$ 36.01万 - 项目类别:
Resolving and understanding the genomic basis of heterogeneous complex traits and diseases
解决和理解异质复杂性状和疾病的基因组基础
- 批准号:
10406616 - 财政年份:2018
- 资助金额:
$ 36.01万 - 项目类别:
Resolving and understanding the genomic basis of heterogeneous complex traits and disease
解决和理解异质复杂性状和疾病的基因组基础
- 批准号:
9764395 - 财政年份:2018
- 资助金额:
$ 36.01万 - 项目类别:
Resolving and understanding the genomic basis of heterogeneous complex traits and disease
解决和理解异质复杂性状和疾病的基因组基础
- 批准号:
10700497 - 财政年份:2018
- 资助金额:
$ 36.01万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别:
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
- 批准号:
10679988 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别:
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别:
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别:
The role of loneliness in cognitive decline and risk for dementia
孤独在认知能力下降和痴呆风险中的作用
- 批准号:
10646826 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别: