Stealth Brusatol and Docetaxel-loaded Nanoparticles for Targeted Prostate Cancer Therapy

用于前列腺癌靶向治疗的隐形 Brusatol 和多西紫杉醇纳米颗粒

基本信息

  • 批准号:
    10224723
  • 负责人:
  • 金额:
    $ 34.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Most chemotherapeutic agents are proliferation dependent in their mechanisms of action and are active against rapidly dividing cells. This is a challenge because prostate cancer is clinically slow growing. In addition, prostate cancer is heterogeneous and the drugs currently in use do not kill all populations of tumor cells leading to relapse and regeneration of the tumor. Resistance to docetaxel is another great challenge with chemotherapy of prostate cancer. Brusatol is a protein synthesis inhibitor in cells and it has specific inhibitory activity on nuclear factor erythroid 2-related factor 2 (Nrf2). Because it inhibits protein synthesis, it can kill all tumor cells regardless of heterogeneity. As a result of its non-selective mechanism of action, and other challenges to its clinical translation, the active targeting or site-specific delivery of brusatol to tumors is essential. In addition, the effect of brusatol on Nrf2 is short-lived. The sustained release of brusatol from a delivery system can ensure a prolonged effect on Nrf2 similar to repeated dosing. In addition to its cytotoxic effects, brusatol can also prevent the development of drug resistance and reverse the resistance to other drugs. The innovation and advantages of these approach are numerous. The nanoparticle platform is essential: (a) to prevent or reduce toxicity to healthy cells (the drugs will be released in the tumor microenvironment as a result of the EPR effect and active targeting by binding to PSMA), (b) for sustained drug release and thereby reverse the short-lived effect on Nrf2, (c) to increase drug concentration in the tumor and thereby increase therapeutic efficacy. In addition, combination therapy of brusatol and docetaxel in a nanoparticle platform allows targeting multiple pathways with the resultant improvement in therapeutic efficacy. Furthermore, combination of both drugs can prevent and/or reverse resistance to docetaxel by well- known reported mechanisms. This can solve the problem of docetaxel resistance. Finally, the brusatol- and docetaxel-loaded nanoparticles as a result of accumulation within the tumor microenvironment can augment and improve the efficacy of radiotherapy. Docetaxel, in addition to its cytotoxicity greatly increases the ROS levels while brusatol inhibits the antioxidant response. This effects greatly increase ROS levels specifically within the tumor. Since radiotherapy exerts its effects by increasing ROS and causing DNA strand breaks, the nanoparticle platform holds the promise to significantly augment radiotherapy within the tumor microenvironment. Our hypothesis is that the fabrication of stealth, targeted, brusatol- and docetaxel-loaded nanoparticles will reverse the transient brusatol effect on Nrf2 by sustained, continuous release from nanoparticles. Nanoparticle combination therapy will: (1) suppress and/or reverse chemoresistance to docetaxel (2) reduce adverse effects, and (3) increase therapeutic efficacy as a result of affecting multiple proliferation pathways of cancer cells and site-specific delivery. To achieve the goals of the proposal, we have the following aims: (1) Fabrication, characterization and optimization of stealth, targeted brusatol- and docetaxel-loaded nanoparticles and controls. (2) Cytotoxicity and cellular internalization studies, flow cytometry analyses and other in vitro studies will be carried done using fluorescent dye- and drug-loaded nanoparticles. (3) Biodistribution, maximum tolerable dose (MTD) and efficacy studies will be done in mice.
抽象的 大多数化疗药物的作用机制是增殖依赖性的,并且能够快速有效地对抗 正在分裂的细胞。这是一个挑战,因为前列腺癌在临床上生长缓慢。此外,前列腺癌是 异质性,目前使用的药物不能杀死所有肿瘤细胞群,导致复发和再生 肿瘤的。对多西紫杉醇的耐药性是前列腺癌化疗的另一个巨大挑战。 Brusatol 是一种细胞内蛋白质合成抑制剂,对核因子红细胞 2 相关蛋白具有特异的抑制活性。 因子 2 (Nrf2)。由于它抑制蛋白质合成,因此无论异质性如何,它都可以杀死所有肿瘤细胞。由于其 非选择性作用机制,以及其临床转化的其他挑战,主动靶向或位点特异性 将布鲁萨醇递送至肿瘤是至关重要的。此外,brusatol 对 Nrf2 的作用是短暂的。持续释放 来自递送系统的 brusatol 可以确保对 Nrf2 的长期作用,类似于重复给药。除了其细胞毒性外 布鲁萨醇还可以防止耐药性的产生并逆转对其他药物的耐药性。 这些方法的创新和优点很多。纳米颗粒平台至关重要:(a) 防止或 减少对健康细胞的毒性(由于EPR效应,药物将释放到肿瘤微环境中, 通过与 PSMA 结合进行主动靶向),(b) 持续药物释放,从而逆转对 Nrf2 的短暂影响,(c) 增加肿瘤内的药物浓度,从而提高治疗效果。此外,联合治疗 纳米颗粒平台中的 brusatol 和多西紫杉醇可以靶向多种途径,从而改善 治疗功效。此外,两种药物的组合可以通过良好的方式预防和/或逆转对多西紫杉醇的耐药性。 已知报道的机制。这可以解决多西紫杉醇耐药的问题。最后,负载布鲁萨醇和多西紫杉醇的 纳米颗粒在肿瘤微环境中的积累可以增强和提高疗效 放射治疗。多西紫杉醇除了具有细胞毒性外,还大大增加了 ROS 水平,而 brusatol 则抑制了 抗氧化反应。这种作用极大地增加了肿瘤内的 ROS 水平。由于放射治疗发挥其 通过增加 ROS 和导致 DNA 链断裂,纳米颗粒平台有望显着 增强肿瘤微环境内的放射治疗。 我们的假设是,制造隐形、靶向、负载布鲁沙醇和多西紫杉醇的纳米颗粒将逆转 通过从纳米颗粒中持续、持续释放,布鲁萨醇对 Nrf2 产生短暂的影响。纳米粒子联合治疗 将:(1)抑制和/或逆转对多西紫杉醇的化疗耐药性(2)减少不良反应,(3)增加治疗效果 由于影响癌细胞的多种增殖途径和位点特异性递送而产生功效。为了实现 根据该提案的目标,我们有以下目标:(1)隐身的制造、表征和优化,有针对性 负载布鲁萨醇和多西紫杉醇的纳米颗粒和对照。 (2) 细胞毒性和细胞内化研究,流程 细胞计数分析和其他体外研究将使用负载荧光染料和药物的纳米颗粒进行。 (3) 生物分布、最大耐受剂量(MTD)和功效研究将在小鼠中进行。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Preparation, Optimization, and In-Vitro Evaluation of Brusatol- and Docetaxel-Loaded Nanoparticles for the Treatment of Prostate Cancer.
  • DOI:
    10.3390/pharmaceutics16010114
  • 发表时间:
    2024-01-16
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Adekiya TA;Moore M;Thomas M;Lake G;Hudson T;Adesina SK
  • 通讯作者:
    Adesina SK
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simeon Kolawole Adesina其他文献

Simeon Kolawole Adesina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

微塑料对酰胺类除草剂在斑马鱼体内富集分布及母体传递效应的影响
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
结直肠癌铂类耐药新机制:HDAC2抑制GLS2基因转录影响谷氨酰胺代谢重编程
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
基于结直肠印戒细胞癌类器官模型探索DDB2/ATF4功能复合体调控谷氨酰胺代谢影响化疗耐药的机制研究
  • 批准号:
    82003317
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
微塑料对设施农田土壤中酰胺类除草剂残留的影响机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
生物炭影响稻田土壤中酰胺类农药吸附、降解行为的生物化学机制
  • 批准号:
    41401353
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing a selective TRPC3 ion channel inhibitor for epilepsy treatment
开发用于癫痫治疗的选择性 TRPC3 离子通道抑制剂
  • 批准号:
    10819354
  • 财政年份:
    2023
  • 资助金额:
    $ 34.76万
  • 项目类别:
Targeting TRPC3 Channels for Epileptic Seizures
针对癫痫发作的 TRPC3 通道
  • 批准号:
    10531252
  • 财政年份:
    2021
  • 资助金额:
    $ 34.76万
  • 项目类别:
Microbiome-Balancing Wraps for Managing Eczema
用于治疗湿疹的微生物组平衡裹敷
  • 批准号:
    10324997
  • 财政年份:
    2021
  • 资助金额:
    $ 34.76万
  • 项目类别:
Targeting TRPC3 Channels for Epileptic Seizures
针对癫痫发作的 TRPC3 通道
  • 批准号:
    10353604
  • 财政年份:
    2021
  • 资助金额:
    $ 34.76万
  • 项目类别:
Neuropeptide FF Receptor Antagonists for Pain Treatment
用于疼痛治疗的神经肽 FF 受体拮抗剂
  • 批准号:
    9762071
  • 财政年份:
    2018
  • 资助金额:
    $ 34.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了