Artificial Intelligence-Based Approaches for Renal Structure Characterization in Computed Tomography Images
基于人工智能的计算机断层扫描图像中肾脏结构表征方法
基本信息
- 批准号:10224190
- 负责人:
- 金额:$ 11.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAffectAgingAlbuminuriaAnatomyAreaArteriesArtificial IntelligenceAutosomal Dominant Polycystic KidneyAwardBiopsyChronic Kidney FailureClinicClinical ResearchCollaborationsCommunitiesComputer Vision SystemsDataData SetDatabasesDetectionDevelopmentDiseaseEarly DiagnosisEnvironmentFibrosisFundingGenerationsGoalsGoldGrantHealthHepatic CystHourHypertensionImageImage AnalysisImaging technologyIndividualK-Series Research Career ProgramsKidneyKidney DiseasesMachine LearningMagnetic Resonance ImagingMeasurementMeasuresMethodsMicroscopicNational Institute of Diabetes and Digestive and Kidney DiseasesNephronsOrganOutcomePathologyPatient CarePatient imagingPatientsPolycystic Kidney DiseasesRadiologic FindingRenal Blood FlowReproducibilityResearchResearch PersonnelResearch Project GrantsResearch ProposalsResourcesRiskScanningSemanticsServicesStenosisStructureSurveysTechniquesTechnologyTimeTransplantationTubular formationVisitWorkX-Ray Computed Tomographyautomated analysisautomated image analysisautomated segmentationbaseclinical decision-makingclinical practicedeep learningdensityearly detection biomarkersgraft failureimage processingimaging biomarkerimaging modalityimprovedinterestinterstitialkidney biopsylearning strategyliving kidney donormembermicroscopic imagingnon-invasive imagingnovelnovel imaging technologypersonalized decisionprecision medicineprognostic valueprogramsradiological imagingresearch clinical testingtool
项目摘要
ABSTRACT
The goal of this R03 Small Grant Program for NIDDK is to provide additional funding for Dr. Kline to expand
upon his work on his K award and apply his expertise to new image acquisitions and problems related to renal
imaging. Dr. Kline’s work has piqued the interest of many internal and external investigators and has led to
recent collaborations with Drs. Rule, Denic, and Kim. Together with Dr. Erickson, this new research team has
prepared this R03 proposal which takes advantage of the unique expertise of each team member. The focus of
this proposal is to bridge the gap between microscopic observations and those assessable non-invasively by
radiological imaging. To do this, we have established a unique dataset of renal CT imaging data and
corresponding biopsy measured nephron densities. We have also generated a large database of gold-standard
segmentation data of kidneys, cortical regions, and medullary pyramids. Using this existing data, we propose
to: (i) develop tools for segmentation of kidneys, segmentation of individual medullary pyramids, and imputing
missing parts of the kidneys outside of the imaged field-of-view in the CT image, and (ii) to establish imaging
biomarkers of early CKD, and correlate macroscopic imaging findings to underlying microscopic structure. This
research will be facilitated by Mayo Clinic’s outstanding clinical and research environment dedicated to
improving patient care, as well as the Aging Kidney Anatomy Study (PI: Rule), which led to the generation of
this unique and well characterized dataset. Dr. Kline’s background in imaging technologies and image
processing makes him particularly well suited to perform this research. In addition to the above aims, near the
end of this research project Dr. Kline will submit a highly competitive R01 application expanding upon the
findings from this research proposal. This proposal will lead to vast improvements to current analysis
workflows, as well as an improved understanding of the prognostic power of renal imaging biomarkers.
Obtaining this R03 Award will greatly facilitate Dr. Kline’s transition into a prosperous independent researcher
focused on developing novel imaging technologies and image analysis techniques for abdominal organ
pathologies.
抽象的
NIDDK的R03小赠款计划的目标是为Kline博士提供额外的资金以扩展
在他获得K奖的工作并将其专业知识应用于与肾脏相关的新图像获取和问题
成像。 Kline博士的工作激起了许多内部和外部调查人员的兴趣,并导致了
与Drs的最新合作。规则,否认和金。这个新研究团队与埃里克森博士一起
准备了这个R03提案,以利用每个团队成员的独特专业知识。重点
该提议是弥合微观观察和可通过不创侵入性观察之间的差距
放射学成像。为此,我们建立了一个独特的肾脏CT成像数据数据集和
相应的活检测量的肾单位密度。我们还生成了一个大的金标准数据库
肾脏,皮质区域和髓质金字塔的分割数据。使用此现有数据,我们建议
至:(i)用于分割肾脏的开发工具,单个髓质金字塔的分割和归纳
在CT图像中,在成像的视野外部缺少肾脏的部分,(ii)建立成像
早期CKD的生物标志物,并将宏观成像发现与潜在的显微镜结构相关。这
研究将由Mayo Clinic的杰出临床和研究环境进行准备
改善患者护理以及衰老的肾脏解剖研究(PI:规则),这导致了生成
这个独特且表征良好的数据集。 Kline博士在成像技术和图像方面的背景
处理使他特别适合进行这项研究。除了上述目的,附近
该研究项目的结尾Kline博士将提交竞争激烈的R01申请,以扩展
这项研究建议的结果。该建议将导致当前分析的大大改善
工作流程以及对肾脏成像生物标志物的预后能力的提高理解。
获得此R03奖将极大地支持Kline博士向繁荣的独立研究员的过渡
专注于开发腹部器官的新型成像技术和图像分析技术
病理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Lee Kline其他文献
Timothy Lee Kline的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Lee Kline', 18)}}的其他基金
Artificial Intelligence-Based Approaches for Renal Structure Characterization in Computed Tomography Images
基于人工智能的计算机断层扫描图像中肾脏结构表征方法
- 批准号:
10040835 - 财政年份:2020
- 资助金额:
$ 11.93万 - 项目类别:
Advanced MR Imaging and Image Analytics as a Precision Medicine Tool to Manage ADPKD
先进的 MR 成像和图像分析作为管理 ADPKD 的精准医学工具
- 批准号:
10259833 - 财政年份:2017
- 资助金额:
$ 11.93万 - 项目类别:
Advanced MR Imaging and Image Analytics as a Precision Medicine Tool to Manage ADPKD
先进的 MR 成像和图像分析作为管理 ADPKD 的精准医学工具
- 批准号:
10011565 - 财政年份:2017
- 资助金额:
$ 11.93万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
老化过程对沙尘辐射效应和反馈机制的影响研究
- 批准号:42375107
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of an electrical impedance myography (EIM) vaginal device for the evaluation of pelvic skeletal muscles
开发用于评估盆腔骨骼肌的电阻抗肌动描记 (EIM) 阴道装置
- 批准号:
10822537 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
The role of adipose tissue in adaptive responses to exercise
脂肪组织在运动适应性反应中的作用
- 批准号:
10569307 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Abdominal Pain in Older Patients in Emergency Departments
急诊科老年患者的腹痛
- 批准号:
10739136 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Calorie Restriction and Hallmarks of Aging in Drosophila
果蝇的热量限制和衰老标志
- 批准号:
10901041 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
A population-based study of deep learning derived organ and tissue measures for accelerated aging using repurposed abdominal CT images
使用重新调整用途的腹部 CT 图像对深度学习衍生的器官和组织加速衰老措施进行基于人群的研究
- 批准号:
10795414 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别: