Small Molecules that Activate Cytoprotective Functions of Tyrosyl-tRNA Synthetase
激活酪氨酰-tRNA 合成酶细胞保护功能的小分子
基本信息
- 批准号:10221719
- 负责人:
- 金额:$ 22.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-10 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAmino AcidsAmino Acyl-tRNA SynthetasesAmyloid beta-42Amyloid beta-ProteinAreaAttenuatedBehavioral AssayBindingBiological AssayBrainCareer ChoiceCell NucleusCenters of Research ExcellenceCrystallizationDNA DamageDNA Double Strand BreakDNA RepairDNA Repair GeneDNA Repair PathwayDataDevelopmentDrug TargetingEnzymesEvolutionExtramural ActivitiesFundingHistologicHomeostasisHydrogen PeroxideImmunoblottingIn VitroIsomerismLeadMetabolicModelingMolecular ConformationMusN-MethylaspartateNamesNatureNeurodegenerative DisordersNeuronal Survival PathwayNeuronsNicotinamide adenine dinucleotideNuclearOxidative StressPathway interactionsPenetrationPhenolsPoly(ADP-ribose) PolymerasesProtein BiosynthesisProto-Oncogene Proteins c-aktPublicationsPublishingResveratrolSeriesSignal TransductionSignal Transduction PathwayStressStructureTestingTherapeuticTyrosineTyrosine-tRNA LigaseWorkbasedensitydesignexcitotoxicityin vitro Modelin vitro activityin vivoin vivo evaluationmouse modelnervous system disorderneuroprotectionneurotoxicitynovelnovel drug classnovel strategiesoxidative damagesmall moleculetargeted treatmenttrans-resveratrol
项目摘要
ABSTRACT
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that activate L-amino acids for protein synthesis. However,
during evolution, aaRSs progressively accrued ‘moonlighting’ functions that are activated under conditions of
diminished protein synthesis and that enable aaRSs to regulate metabolic homeostasis and modulate signal
transduction pathways. In particular, Tyrosyl-tRNA synthetase (TyrRS) moves into the nucleus under stress
conditions and facilitates DNA repair through poly-ADP-ribose polymerase 1 (PARP1) activation. PARP1, the
central regulator of nicotinamide adenine dinucleotide (NAD+) signaling, senses and responds to DNA damage
and activates DNA repair pathways. Unrepaired or erroneously repaired DNA double strand breaks (DSBs) in
neurons are a major contributing factor in the development of a variety of neurological disorders including
Alzheimer’s disease (AD). In particular, accumulation of amyloid β(Aβ), a hallmark of AD, exacerbates the
accumulation of DSBs in neurons. Remarkably, PARP1 is downregulated in AD and the TyrRS-PARP1
pathway was shown to attenuate Aβ-induced neurotoxicity. Stimulation of this pathway could offer a new
approach to the treatment of AD and other neurodegenerative diseases. We hypothesize that the L-tyrosine
binding pocket of eukaryotic TyrRS can be targeted to design and develop small molecules named TyrRS-
Targeting Compounds (TTCs), which will activate the moonlighting functions of TyrRS that stimulate DNA
repair, and that such molecules will exert neuroprotective activities in AD-relevant models. In the first year of
this project, we have designed and synthesized a series of TTCs on the basis of our work published in Nature,
which demonstrated that the cis-isomer of resveratrol (RSV) binds to TyrRS and acts as an L-tyrosine
antagonist, activating PARP1-dependent signaling cascades. Some of the newly synthesized TTCs have
already shown neuroprotective activity in vitro. Mechanistic analysis indicated that the lead neuroprotective
compound activates AKT and upregulates DNA repair proteins. In the remaining period, we will pursue the
following Specific Aims. Under Aim 1, we will continue structure-based design and synthesis of TyrRS
Targeting Compounds (TTCs) based on the cis-RSV-bound co-crystal structure of TyrRS and demonstrate that
such molecules engage and affect their TyrRS target. Under Aim 2, we will determine the effect of TTCs on
the survival of primary cortical neurons and TyrRS/PARP1-dependent DNA repair and signaling cascades.
Under Aim 3, we will test the in vivo therapeutic potential of TTCs that show neuroprotection in vitro using
5XFAD mouse model of AD. The completion of these Aims will provide proof-of-principle data that would guide
the eventual development of a new class of drugs that targets TyrRS to activate PARP1-dependent DNA repair
in neurons, with potential applicability to AD and other neurodegenerative diseases that originate from
accumulated DNA damage.
抽象的
氨基酰基-TRNA合成酶(AARSS)是激活L-氨基酸以进行蛋白质合成的酶。然而,
在进化过程中,AARS逐渐获得的“月光”功能在
蛋白质合成减少,使AARS能够调节代谢稳态并调节信号
转导途径。特别是,在应激下,酪酶-TRNA合成酶(Tyrrs)进入核
条件并通过聚ADP-核糖聚合酶1(PARP1)激活促进DNA修复。 Parp1,
烟酰胺腺苷二核苷酸(NAD+)信号传导,对DNA损伤的反应
并激活DNA修复途径。未修复或错误修复的DNA双链断裂(DSB)
神经元是多种神经系统疾病的发展的主要因素
阿尔茨海默氏病(AD)。特别是,淀粉样β(Aβ)的积累,AD的标志,加剧了
DSB在神经元中的积累。值得注意的是,PARP1在AD和Tyrrs-Parp1中被下调
显示途径可减弱Aβ诱导的神经毒性。刺激这一途径可能会提供新的
治疗AD和其他神经退行性疾病的方法。我们假设L-酪氨酸
真核Tyrrs的结合袋可以针对设计和发展名为Tyrrs-的小分子
靶向化合物(TTC),它将激活刺激DNA的Tyrr的月光功能
维修,并且这种分子将在AD相关模型中执行神经保护活动。在第一年
这个项目,我们根据我们在自然界发表的工作设计并合成了一系列TTC,
这表明白藜芦醇(RSV)的顺式异构体与Tyrrs结合并充当L-酪氨酸
拮抗剂,激活PARP1依赖性信号级联。一些新合成的TTC具有
在体外已经显示出神经保护活性。机械分析表明铅神经保护
化合物激活AKT并上调DNA修复蛋白。在剩下的时期,我们将追求
遵循特定目标。在AIM 1下,我们将继续基于结构的设计和Tyrrs的合成
基于CIS-RSV结合的Tyrrs结构的靶向化合物(TTC),并证明这一点
这样的分子参与并影响其Tyrrs目标。在AIM 2下,我们将确定TTC对
原代皮质神经元和Tyrr/PARP1依赖性DNA修复和信号级联的存活。
在AIM 3下,我们将测试TTC的体内治疗潜力
5XFAD鼠标AD的模型。这些目标的完成将提供原则证明数据,以指导
针对Tyrrs激活PARP1依赖性DNA修复的新类药物的事件开发
在神经元中,具有起源于AD的潜在适用性和其他神经退行性疾病
累积的DNA损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sajish Mathew其他文献
Sajish Mathew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sajish Mathew', 18)}}的其他基金
Small Molecules that Activate Cytoprotective Functions of Tyrosyl-tRNA Synthetase
激活酪氨酰-tRNA 合成酶细胞保护功能的小分子
- 批准号:
9794384 - 财政年份:
- 资助金额:
$ 22.35万 - 项目类别:
Small Molecules that Activate Cytoprotective Functions of Tyrosyl-tRNA Synthetase
激活酪氨酰-tRNA 合成酶细胞保护功能的小分子
- 批准号:
9978924 - 财政年份:
- 资助金额:
$ 22.35万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Molecular mechanisms of gamma-secretase modulation central to Alzheimer’s disease
γ-分泌酶调节的分子机制对阿尔茨海默病至关重要
- 批准号:
10590920 - 财政年份:2022
- 资助金额:
$ 22.35万 - 项目类别:
Investigating the Activation Mechanism of SARM1 during Axon Degeneration
轴突变性过程中 SARM1 激活机制的研究
- 批准号:
10649519 - 财政年份:2021
- 资助金额:
$ 22.35万 - 项目类别:
Novel screening platform for O-GlcNAc transferase substrate-specific inhibitors to combat aging-related diseases
用于对抗衰老相关疾病的 O-GlcNAc 转移酶底物特异性抑制剂的新型筛选平台
- 批准号:
10287662 - 财政年份:2021
- 资助金额:
$ 22.35万 - 项目类别:
Novel screening platform for O-GlcNAc transferase substrate-specific inhibitors to combat aging-related diseases
用于对抗衰老相关疾病的 O-GlcNAc 转移酶底物特异性抑制剂的新型筛选平台
- 批准号:
10475192 - 财政年份:2021
- 资助金额:
$ 22.35万 - 项目类别: