Enabling physical stimuli in the study of structural dynamics: The sensory ion channels
在结构动力学研究中启用物理刺激:感觉离子通道
基本信息
- 批准号:10221608
- 负责人:
- 金额:$ 118.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAreaAtomic Force MicroscopyBiologicalBiomedical ResearchChemicalsComplementCryoelectron MicroscopyCrystallizationCuesDetectionDevelopmentElectronsEngineeringExposure toFluorescence Resonance Energy TransferImageIon ChannelKineticsLateralLeadMedicineMembraneMembrane ProteinsMethodologyModalityMolecular ConformationMolecular and Cellular BiologyPathologyPhysiologicalPiezo ion channelsProteinsResolutionRetinal blind spotRoentgen RaysSensorySpeedStimulusStructureTRPV channelTechniquesTechnologyTemperatureTextTimeVoltage-Gated Potassium ChannelX ray diffraction analysisalgorithm developmentclassification algorithmdirect applicationimprovedinsightinstrumentationmovienew technologynovelparticlephysical processprotein structureresponsestructural biologytemporal measurementtoolvoltage
项目摘要
Simon Scheuring, Weill Cornell Medicine
Scientific Area : 6 MCB : Molecular and Cellular Biology / 5 IE : Instrumentation and Engineering
Project Summary/Abstract (30 lines of text):
In the recent years, we have seen tremendous progress in structural biology owing to breakthroughs in 3D-
crystallization methodology for X-ray diffraction and improved particle classification algorithms and the
development of direct electron detection for cryo-EM. As a result, membrane protein structure resolution is
now rather routine and progresses at a pace of almost 2 structures per week. To complement structures,
technologies like FRET, EPR and HDX give invaluable insights into the range of dynamics and kinetics of
conformational states. All experimental structural and dynamical techniques have however a blind spot:
they are poorly adapted to analyze proteins in response to physical stimuli such as force, temperature and
voltage. This is particularly regrettable for the case of sensory ion channels that process these physical
stimuli, because they are involved in some of the most crucial physiological functions and are implicated in
various pathologies. Another technique that is powerful to assess conformational dynamics is high-speed
atomic force microscopy (HS-AFM), this approach has two significant advantages: (i) it is also a structural
technique, meaning that it provides real-space real-time movies of molecules, and (ii) it operates under
physiological and changeable conditions. Thus, the first advantage allows to characterize the structure and
conformational changes of the channels at ~1nm lateral, ~0.1nm vertical and ~100ms temporal resolution.
While the second advantage opens the experimental tool to the application of external stimuli,
(bio)chemical and also, importantly, physical stimuli. In this project, we will develop novel extensions to HS-
AFM to take movies of the conformational response of sensory channels to such physical cues. We will
expose mechano-sensitive Piezo channels to force, temperature-sensitive TRPV channels to temperature-
sweeps, and voltage-gated K+ channels to the direct application of transmembrane voltage, and image the
structural changes of these proteins in response to such stimuli. This project will, on the one hand push the
limits of HS-AFM technologically and create novel operational modalities of it and such further establish this
rather new technology for a wide range of structure-function application in biomedical research, and on the
other hand be transformative for the structural biology of sensory ion channels by providing insights into
long-standing questions how these biological machines transform such physical stimuli into coordinated
conformational dynamics that ultimately lead to channel gating.
西蒙·舍林,威尔康奈尔医学
科学领域 : 6 MCB : 分子和细胞生物学 / 5 IE : 仪器和工程
项目摘要/摘要(30 行文本):
近年来,由于 3D 技术的突破,我们看到结构生物学取得了巨大进展。
X 射线衍射结晶方法和改进的颗粒分类算法以及
冷冻电镜直接电子检测的发展。因此,膜蛋白结构分辨率为
现在相当常规,并且以每周几乎 2 个结构的速度进行。为了补充结构,
FRET、EPR 和 HDX 等技术为了解物体的动力学和动力学范围提供了宝贵的见解
构象状态。然而,所有实验结构和动力学技术都有一个盲点:
它们不适合分析蛋白质对物理刺激(如力、温度和
电压。对于处理这些物理的感觉离子通道来说,这是特别令人遗憾的。
刺激,因为它们涉及一些最重要的生理功能,并与
各种病理。另一种强大的评估构象动力学的技术是高速
原子力显微镜(HS-AFM),这种方法有两个显着的优点:(i)它也是一种结构
技术,这意味着它提供分子的真实空间实时电影,并且(ii)它在
生理和多变的条件。因此,第一个优点允许表征结构和
通道的构象变化在〜1nm横向,〜0.1nm垂直和〜100ms时间分辨率。
虽然第二个优点为应用外部刺激打开了实验工具,
(生物)化学刺激,而且重要的是物理刺激。在这个项目中,我们将开发 HS- 的新颖扩展
AFM 可以拍摄感觉通道对此类物理线索的构象反应的视频。我们将
暴露机械敏感的压电通道,以迫使温度敏感的 TRPV 通道受到温度影响
扫描和电压门控 K+ 通道直接应用跨膜电压,并对
这些蛋白质响应此类刺激而发生结构变化。该项目一方面将推动
HS-AFM 在技术上的局限性并创造了它的新颖的操作模式,从而进一步确立了这一点
在生物医学研究中广泛应用结构功能的相当新技术
另一方面,通过提供对感觉离子通道结构生物学的变革
长期存在的问题是这些生物机器如何将这种物理刺激转化为协调的
最终导致通道门控的构象动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Scheuring其他文献
Simon Scheuring的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Scheuring', 18)}}的其他基金
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
- 批准号:
10471928 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
Enabling physical stimuli in the study of structural dynamics: The sensory ion channels
在结构动力学研究中启用物理刺激:感觉离子通道
- 批准号:
10442739 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
Enabling physical stimuli in the study of structural dynamics: The sensory ion channels
在结构动力学研究中启用物理刺激:感觉离子通道
- 批准号:
10681320 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
- 批准号:
10667555 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
- 批准号:
10240704 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
- 批准号:
10023957 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
相似国自然基金
开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
- 批准号:42301183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Unveiling Functional Roles of Apical Surface Interactions Between Opposing Cell Layers
揭示相对细胞层之间顶端表面相互作用的功能作用
- 批准号:
10629101 - 财政年份:2023
- 资助金额:
$ 118.65万 - 项目类别:
Three-dimensional Confocal Microscopy Visualization and AFM-IR Chemical Mapping of Lung Surfactant Monolayer Collapse Morphologies
肺表面活性剂单层塌陷形态的三维共焦显微镜可视化和 AFM-IR 化学图谱
- 批准号:
10751972 - 财政年份:2023
- 资助金额:
$ 118.65万 - 项目类别:
The Impact of COL6A3 Mutation on Inflammatory Susceptibility in Osteoarthritis
COL6A3 突变对骨关节炎炎症易感性的影响
- 批准号:
10387150 - 财政年份:2022
- 资助金额:
$ 118.65万 - 项目类别:
The Impact of COL6A3 Mutation on Inflammatory Susceptibility in Osteoarthritis
COL6A3 突变对骨关节炎炎症易感性的影响
- 批准号:
10612768 - 财政年份:2022
- 资助金额:
$ 118.65万 - 项目类别:
An optical approach to 3-dimensional micro-mechanical imaging of the extra-cellular matrix (ECM)
细胞外基质 (ECM) 3 维微机械成像的光学方法
- 批准号:
10303697 - 财政年份:2021
- 资助金额:
$ 118.65万 - 项目类别: