Enabling physical stimuli in the study of structural dynamics: The sensory ion channels
在结构动力学研究中启用物理刺激:感觉离子通道
基本信息
- 批准号:10221608
- 负责人:
- 金额:$ 118.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAreaAtomic Force MicroscopyBiologicalBiomedical ResearchChemicalsComplementCryoelectron MicroscopyCrystallizationCuesDetectionDevelopmentElectronsEngineeringExposure toFluorescence Resonance Energy TransferImageIon ChannelKineticsLateralLeadMedicineMembraneMembrane ProteinsMethodologyModalityMolecular ConformationMolecular and Cellular BiologyPathologyPhysiologicalPiezo ion channelsProteinsResolutionRetinal blind spotRoentgen RaysSensorySpeedStimulusStructureTRPV channelTechniquesTechnologyTemperatureTextTimeVoltage-Gated Potassium ChannelX ray diffraction analysisalgorithm developmentclassification algorithmdirect applicationimprovedinsightinstrumentationmovienew technologynovelparticlephysical processprotein structureresponsestructural biologytemporal measurementtoolvoltage
项目摘要
Simon Scheuring, Weill Cornell Medicine
Scientific Area : 6 MCB : Molecular and Cellular Biology / 5 IE : Instrumentation and Engineering
Project Summary/Abstract (30 lines of text):
In the recent years, we have seen tremendous progress in structural biology owing to breakthroughs in 3D-
crystallization methodology for X-ray diffraction and improved particle classification algorithms and the
development of direct electron detection for cryo-EM. As a result, membrane protein structure resolution is
now rather routine and progresses at a pace of almost 2 structures per week. To complement structures,
technologies like FRET, EPR and HDX give invaluable insights into the range of dynamics and kinetics of
conformational states. All experimental structural and dynamical techniques have however a blind spot:
they are poorly adapted to analyze proteins in response to physical stimuli such as force, temperature and
voltage. This is particularly regrettable for the case of sensory ion channels that process these physical
stimuli, because they are involved in some of the most crucial physiological functions and are implicated in
various pathologies. Another technique that is powerful to assess conformational dynamics is high-speed
atomic force microscopy (HS-AFM), this approach has two significant advantages: (i) it is also a structural
technique, meaning that it provides real-space real-time movies of molecules, and (ii) it operates under
physiological and changeable conditions. Thus, the first advantage allows to characterize the structure and
conformational changes of the channels at ~1nm lateral, ~0.1nm vertical and ~100ms temporal resolution.
While the second advantage opens the experimental tool to the application of external stimuli,
(bio)chemical and also, importantly, physical stimuli. In this project, we will develop novel extensions to HS-
AFM to take movies of the conformational response of sensory channels to such physical cues. We will
expose mechano-sensitive Piezo channels to force, temperature-sensitive TRPV channels to temperature-
sweeps, and voltage-gated K+ channels to the direct application of transmembrane voltage, and image the
structural changes of these proteins in response to such stimuli. This project will, on the one hand push the
limits of HS-AFM technologically and create novel operational modalities of it and such further establish this
rather new technology for a wide range of structure-function application in biomedical research, and on the
other hand be transformative for the structural biology of sensory ion channels by providing insights into
long-standing questions how these biological machines transform such physical stimuli into coordinated
conformational dynamics that ultimately lead to channel gating.
Simon Scheuring,Weill Cornell Medicine
科学领域:6 MCB:分子和细胞生物学 / 5 IE:仪器和工程
项目摘要/摘要(文本30行):
近年来,由于3D-的突破,我们在结构生物学方面取得了巨大进步
X射线衍射和改进的粒子分类算法的结晶方法和
开发冷冻EM的直接电子检测。结果,膜蛋白结构分辨率是
现在,常规并以每周近2个结构的速度进行。补充结构,
诸如FRET,EPR和HDX之类的技术提供了对动态和动力学范围的宝贵见解
构象状态。但是,所有实验性结构和动态技术都有一个盲点:
它们的适应性很差,可以根据物理刺激(例如力,温度和温度)分析蛋白质
电压。对于处理这些物理的感觉离子频道的情况,这尤其令人遗憾
刺激,因为它们参与了一些最关键的生理功能,并与
各种病理。另一种能够评估构象动力学强大的技术是高速
原子力显微镜(HS-AFM),该方法具有两个重要的优势:(i)它也是结构性的
技术,这意味着它提供了分子的真实空间实时电影,并且(ii)在
生理和可变条件。因此,第一个优势允许表征结构和
左侧约1nm处的通道的构象变化,垂直分辨率约为0.1nm和〜100ms。
虽然第二个优势为应用外部刺激的实验工具打开了
(生物)化学,重要的是物理刺激。在这个项目中,我们将为HS-开发新颖的扩展
AFM将感觉频道对这种物理提示的构象反应进行构象反应。我们将
暴露机械敏感的压电通道以强力,温度敏感的TRPV通道至温度
扫描和电压门控的K+通道直接应用跨膜电压,并为
这些蛋白质的结构变化响应于这种刺激。该项目将一方面推动
HS-AFM在技术上的限制并创造了它的新型操作方式,并进一步确定了这一点
在生物医学研究中以及在
另一只手通过提供洞察力来实现感官离子通道的结构生物学
这些生物机器如何将这种物理刺激转化为协调的问题
构象动力学最终导致通道门控。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Scheuring其他文献
Simon Scheuring的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Scheuring', 18)}}的其他基金
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
- 批准号:
10471928 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
Enabling physical stimuli in the study of structural dynamics: The sensory ion channels
在结构动力学研究中启用物理刺激:感觉离子通道
- 批准号:
10442739 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
Enabling physical stimuli in the study of structural dynamics: The sensory ion channels
在结构动力学研究中启用物理刺激:感觉离子通道
- 批准号:
10681320 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
- 批准号:
10667555 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
- 批准号:
10240704 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
- 批准号:
10023957 - 财政年份:2019
- 资助金额:
$ 118.65万 - 项目类别:
相似国自然基金
跨区域调水工程与区域经济增长:效应测度、机制探究与政策建议
- 批准号:72373114
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
新型城镇化与区域协调发展的机制与治理体系研究
- 批准号:72334006
- 批准年份:2023
- 资助金额:167 万元
- 项目类别:重点项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
- 批准号:82360345
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Unveiling Functional Roles of Apical Surface Interactions Between Opposing Cell Layers
揭示相对细胞层之间顶端表面相互作用的功能作用
- 批准号:
10629101 - 财政年份:2023
- 资助金额:
$ 118.65万 - 项目类别:
Three-dimensional Confocal Microscopy Visualization and AFM-IR Chemical Mapping of Lung Surfactant Monolayer Collapse Morphologies
肺表面活性剂单层塌陷形态的三维共焦显微镜可视化和 AFM-IR 化学图谱
- 批准号:
10751972 - 财政年份:2023
- 资助金额:
$ 118.65万 - 项目类别:
The Impact of COL6A3 Mutation on Inflammatory Susceptibility in Osteoarthritis
COL6A3 突变对骨关节炎炎症易感性的影响
- 批准号:
10387150 - 财政年份:2022
- 资助金额:
$ 118.65万 - 项目类别:
The Impact of COL6A3 Mutation on Inflammatory Susceptibility in Osteoarthritis
COL6A3 突变对骨关节炎炎症易感性的影响
- 批准号:
10612768 - 财政年份:2022
- 资助金额:
$ 118.65万 - 项目类别:
An optical approach to 3-dimensional micro-mechanical imaging of the extra-cellular matrix (ECM)
细胞外基质 (ECM) 3 维微机械成像的光学方法
- 批准号:
10303697 - 财政年份:2021
- 资助金额:
$ 118.65万 - 项目类别: