New treatment monitoring biomarkers for brain tumors using multiparametric MRI with machine learning
使用多参数 MRI 和机器学习监测脑肿瘤生物标志物的新治疗方法
基本信息
- 批准号:10220248
- 负责人:
- 金额:$ 54.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAreaArtificial IntelligenceBiological MarkersBiopsy SpecimenBrain NeoplasmsBrain regionClinicalContrast MediaDataDevelopmentDiffusionDiffusion Magnetic Resonance ImagingEdemaEnhancing LesionExcisionGlioblastomaGliomaGoalsImageImaging TechniquesIndividualLesionMGMT geneMachine LearningMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsModelingMolecularMonitorNewly DiagnosedPatientsPerfusionPhysiologicalPrediction of Response to TherapyPrimary LesionProbabilityRecurrenceSignal TransductionTestingTissue BanksTissue SampleTrainingTumor BurdenTumor MarkersWorkbevacizumabbiomarker developmentblood-brain barrier permeabilizationchemoradiationcontrast enhancedconvolutional neural networkimaging biomarkerimproved outcomeindexinginterestmagnetic resonance imaging biomarkermolecular markerneuro-oncologynovelnovel markeroutcome predictionpredictive modelingprospectiveresponsetreatment effecttumor
项目摘要
Project Summary/Abstract
The goal of this project is to develop and evaluate novel imaging biomarker(s) that use multiparameter MRI
methods to identify the true spatial extent of glial brain tumors. The standard RANO (response assessment in
neuro-oncology) criteria define tumor extent as the region of bright signal on post-contrast agent T1w (T1+C)
images, termed the contrast enhancing lesion (CEL), along with the peritumoral bright signal on T2w FLAIR
images, referred to as non-enhancing lesion (NEL). Yet, the CEL reflects the permeability of the blood-brain
barrier to contrast agent and can appear the same for both tumor and treatment effect. Likewise, though NEL
likely contains tumor, current imaging cannot distinguish tumor from edema. These difficulties result in the
inability of current anatomical MRI methods to determine the true spatial extent of glial tumors, a
serious limitation for treatment management of brain tumor patients.
We and others have shown that advanced MRI methods, including perfusion and diffusion MRI, are useful for
assessing tumor grade, predicting outcomes, or distinguishing tumor from treatment effect. Yet, almost
exclusively, the approach has been to extract mean values of a single physiological parameter from
predetermined tumor regions of interest and then measure their correlation with the desired clinical index.
Although this approach has been useful for initial biomarker development, it underutilizes the rich
multiparameter and spatial information available, thus motivating the current study. First, two multiparameter
MRI biomarkers will be developed to identify enhancing and infiltrating tumor burden. Then, they will be
evaluated individually and in combination to assess the total tumor burden in comparison with the standard
volumetric metrics in current use.
The development and testing of these biomarkers will be accomplished in several independent steps outlined
by the proposed aims. First (Aim 1), we propose to develop an MRI biomarker that gives the voxelwise
probability of enhancing tumor burden within CEL, with early results showing the ability to distinguish tumor
from treatment effect. Next, we will develop a multiparameter biomarker capable of identifying infiltrating tumor
within NEL (Aim 2). These efforts leverage our previous results using artificial intelligence, recent advances in
machine learning, and our unique brain tumor tissue bank with hundreds of biopsy samples spatially matched
to imaging. Finally (Aim 3), the spatial extent of tumor burden within CEL and NEL will be tested in their ability
to distinguish pseudo-progression/response from true progression/response, which is a primary question that
confounds treatment management today.
In summary, multiparameter advanced MRI biomarkers of enhancing and infiltrative brain tumor have the
potential to cause a paradigm shift in how treatment is managed, ultimately resulting in improved outcomes.
项目摘要/摘要
该项目的目的是开发和评估使用多参数MRI的新型成像生物标志物
确定神经胶质脑肿瘤的真实空间范围的方法。标准RANO(响应评估
神经肿瘤学标准将肿瘤范围定义为对比后剂T1W(T1+C)上明亮信号的区域
图像,称为对比度增强病变(CEL),以及T2W Flair上的周围明亮信号
图像,称为非增强病变(NEL)。然而,CEL反映了血脑的渗透性
造影剂的障碍物,对于肿瘤和治疗效果都可以看起来相同。同样,虽然尼尔
可能包含肿瘤,当前的成像无法将肿瘤与水肿区分开。这些困难导致
当前的解剖学MRI方法无法确定神经胶质肿瘤的真实空间范围,A
严重限制脑肿瘤患者的治疗管理。
我们和其他人表明,包括灌注和扩散MRI在内的高级MRI方法对
评估肿瘤等级,预测结局或区分肿瘤与治疗效果。但是,几乎
完全是,该方法是从中提取单个生理参数的平均值
预定的感兴趣的肿瘤区域,然后测量其与所需的临床指数的相关性。
尽管这种方法对于初始生物标志物的开发很有用,但它不足以富人
可用的多参数和空间信息,从而激发了当前的研究。首先,两个多参数
将开发MRI生物标志物来确定增强和渗透肿瘤负担。然后,他们会
与标准相比,分别评估并组合评估总肿瘤负担
当前使用中的体积指标。
这些生物标志物的开发和测试将在概述的几个独立步骤中完成
由拟议的目的。首先(AIM 1),我们建议开发一种MRI生物标志物,以提供VoxelWise
增强CEL内肿瘤负担的概率,早期结果表明能够区分肿瘤
从治疗效果。接下来,我们将开发一个能够识别浸润肿瘤的多参数生物标志物
在内尔(AIM 2)内。这些努力利用人工智能利用我们先前的结果,最近的进步
机器学习,以及我们独特的脑肿瘤组织库,具有数百个活检样品的空间匹配
进行成像。最后(AIM 3),CEL和NEL内肿瘤负担的空间范围将以其能力进行测试
为了区分伪产生/响应与真实进步/响应,这是一个主要问题
今天混淆了治疗管理。
总而言之,多参数的高级MRI生物标志物的增强和浸润性脑肿瘤具有
可能导致治疗方式的范式转变的潜力,最终导致结果改善。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHLEEN Marie SCHMAINDA其他文献
KATHLEEN Marie SCHMAINDA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHLEEN Marie SCHMAINDA', 18)}}的其他基金
New treatment monitoring biomarkers for brain tumors using multiparametric MRI with machine learning
使用多参数 MRI 和机器学习监测脑肿瘤生物标志物的新治疗方法
- 批准号:
10595516 - 财政年份:2021
- 资助金额:
$ 54.77万 - 项目类别:
New treatment monitoring biomarkers for brain tumors using multiparametric MRI with machine learning
使用多参数 MRI 和机器学习监测脑肿瘤生物标志物的新治疗方法
- 批准号:
10392483 - 财政年份:2021
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
9212106 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
10250327 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
10006506 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
9000135 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
10683139 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
8814188 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
8631484 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Quantitative (Perfusion and Diffusion) MRI Biomarkers to Measure Glioma Response
用于测量神经胶质瘤反应的定量(灌注和扩散)MRI 生物标志物
- 批准号:
10454386 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别:
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
- 批准号:
10665493 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别:
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 54.77万 - 项目类别: