"Grid-Tape": A High-Throughput Platform for Brain Connectomics and Nanoscale Structural Analysis
“Grid-Tape”:用于脑连接组学和纳米级结构分析的高通量平台
基本信息
- 批准号:10219050
- 负责人:
- 金额:$ 47.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-07 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAreaAutomationBRAIN initiativeBrainCommunitiesDataData AnalysesData SetDevelopmentDiseaseEconomicsElectron MicroscopeElectron MicroscopyExcisionFilmFoundationsFundingGeometryGoalsGrantHealthHumanImageImaging TechniquesIndividualInstitutesLaboratoriesLasersMapsMethodsMicroscopeModernizationMorphologic artifactsMusNetwork-basedNeurodegenerative DisordersNeuronsNeuropilNeurosciencesNoisePathway interactionsPhasePolymersPreparationPriceProductionPropertyProtocols documentationResearch PersonnelResolutionRoleRunningSamplingScanningSchizophreniaScienceSeriesSignal TransductionSpeedStainsStandardizationStructureSynapsesSystemTechnologyThickThinnessTissue SampleTissue StainsTissue imagingTissuesTransmission Electron MicroscopyUnited States National Institutes of HealthVisual CortexWorkautism spectrum disorderbasebrain tissuecold temperaturecostcost effectivedata acquisitiondata qualityfield studyflexibilityimprovedinnovationinstrumentinstrumentationmicroscopic imagingmillimeternanoscalenervous system disorderpetabytesample collectionsensortooltransmission process
项目摘要
The wiring diagram of brain circuits is one of the foundational and fundamental questions of modern
neuroscience. Since the connectivity of these circuits critically influences their function, understanding the
structure of these networks will have a major impact on understanding their role in health and disease. The
primary challenge is extracting a circuit-sized volume at synaptic resolution, which requires large-scale electron
microscopy imaging of thousands of sections of brain tissue. Until now, the slow speed of tissue sectioning and
imaging has been a major limitation to the field of connectomics, requiring many years to acquire a dataset of
this size. GridTape™, developed in Phase I, removes this bottleneck by allowing fast automated imaging of
thousands of sections on a continuous tape inside a transmission electron microscope (TEM). This new reel-
to-reel sample substrate leverages inherent speed and resolution advantages of camera-based TEM to provide
higher data acquisition rates with lower cost than scanning electron microscope (SEM) alternatives. In Phase I,
GridTape™ achieved a longstanding goal for connectomics with the successful acquisition of a cubic mm
volume at 4 nm resolution, yielding a dataset of more than 2 petabytes. The data spanned 26,500 serial
sections split between seven reels of GridTape™, and was imaged with five TEM microscopes running in
parallel for six months at an effective imaging rate of 500 Mpixel/s. While the best multi-beam SEM alternative
can achieve 3X the imaging rate of a single TEM with GridTape™, the cost is roughly 20X higher ($4-6M) and
only a few multi-beam SEMs currently exist in the world; this drives the economics of volume-EM heavily in
favor of an approach using multiple cheaper TEMs in parallel with GridTape™. With feasibility clearly
demonstrated, Luxel will partner with Harvard in Phase II to improve a number of data quality issues for
GridTape™. The technical challenges include reducing the background image noise from intrinsic structure in
the support films, reducing costs for the thin film coating, mitigating image artifacts that arise from tissue cracks
and folds, and expanding the film-covered slot areas to allow larger tissue samples without breakage. We plan
to achieve these goals by developing alternative low-noise polymer films that also offer manufacturing
scalability benefits including faster substrate removal. We will partner with connectomics researchers at
Harvard and the Allen Institute to determine optimal tissue block preparation formulas and methods to maintain
film tension that mitigate tissue cracks and folds.
大脑电路的接线图是现代的基础和基本问题之一
神经科学
网络的结构将对他们在健康和疾病中的作用产生重大影响
主要挑战是在突触分辨率下提取电路尺寸的体积,这需要大规模电子
到目前为止的显微镜成像。
成像一直是连接组领域的主要限制,要求许多Youys获取数据集
这种大小。
在透射电子显微镜(TEM)中连续胶带上的数千个部分。
to-reel样品基板利用基于相机TEM的固有速度和分辨率的优势来提供
比扫描电子显微镜(SEM)替代的较高的数据采集率。
GridTape™通过成功获得立方MM的连接组学实现了长期的连接目标。
4 nm分辨率的体积,产生超过2 pb的数据集。
截面分裂在Gridtape™的七个卷轴之间,并用五个TEM显微镜成像
平行六个月的有效成像速率为500 mpixel/s。
可以通过GridTape™实现单个TEM的成像率的3倍,成本大约高20倍(4-6m),并且成本
目前,世界上只有几个多光束SEM;
使用与Gridtape™并行的多个较便宜的TEM的方法。
卢克斯(Luxel
GridTape™。
支撑膜,降低薄膜涂层的成本,减轻组织裂缝的图像图像伪影
折叠,扩大膜覆盖的插槽区域,以允许我们计划的较大的组织样品。
通过开发替代性低噪声聚合物膜来实现这些目标,这些薄膜也提供制造业
可扩展性好处,包括更快的基板。
哈佛大学和艾伦学院以确定最佳组织块制备公式的tomethods维持
减轻组织裂纹和褶皱的膜张力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan M Smith其他文献
Application of adaptive filters to visual testing and treatment in acquired pendular nystagmus.
自适应滤波器在获得性摆动性眼震视觉测试和治疗中的应用。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Ryan M Smith;B. Oommen;J. Stahl - 通讯作者:
J. Stahl
TACG _4089_ Grant.indd
TACG _4089_ Grant.indd
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Struan FA Grant;Michelle Petri;Jonathan P Bradfield;Cecilia E. Kim;Erin Santa;Kiran Annaiah;Edward C Frackelton;Joseph T Glessner;F. G. Otieno;Julie L Shaner;Ryan M Smith;Andrew W Eckert;Rosetta M Chiavacci;Marcin Imielinski;Kathleen E Sullivan;Hakon Hakonarson - 通讯作者:
Hakon Hakonarson
Ryan M Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan M Smith', 18)}}的其他基金
"Grid-Tape": A High-Throughput Platform for Brain Connectomics and Nanoscale Structural Analysis
“Grid-Tape”:用于脑连接组学和纳米级结构分析的高通量平台
- 批准号:
9255254 - 财政年份:2017
- 资助金额:
$ 47.76万 - 项目类别:
"Grid-Tape": A High-Throughput Platform for Brain Connectomics and Nanoscale Structural Analysis
“Grid-Tape”:用于脑连接组学和纳米级结构分析的高通量平台
- 批准号:
10078761 - 财政年份:2017
- 资助金额:
$ 47.76万 - 项目类别:
相似国自然基金
数据驱动的心血管疾病区域协同医疗服务研究
- 批准号:72301123
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高温与臭氧复合暴露对我国心脑血管疾病寿命损失年的区域分异影响及未来风险预估研究
- 批准号:42305191
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GlyRS的内部无序区域在运动神经发育和疾病中的功能研究
- 批准号:32300790
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
精神分裂症风险区域1p36.23在疾病中遗传机制及致病机理研究
- 批准号:82301690
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同亚群表皮朗格汉斯细胞免疫代谢重编程对重大皮肤疾病区域免疫重塑的调控及机制
- 批准号:82130089
- 批准年份:2021
- 资助金额:290 万元
- 项目类别:重点项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 47.76万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别:
Trpv4 regulation of lymphatic vascular function: Implications in metabolic syndrome
Trpv4 对淋巴管功能的调节:对代谢综合征的影响
- 批准号:
10638806 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 47.76万 - 项目类别: