Mechanisms driving airway inflammation in chronic lung disease
慢性肺病气道炎症的驱动机制
基本信息
- 批准号:10216169
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adaptive Immune SystemAdoptive TransferAirway ResistanceAntibioticsAntigensAutomobile DrivingBacteriaCD4 Positive T LymphocytesCellsChronic Obstructive Airway DiseaseChronic lung diseaseDataDefectDendritic CellsDevelopmentDiseaseDisease ProgressionDisease modelDown-RegulationElderlyEpithelialEpithelial CellsExposure toFundingGenerationsHost DefenseHumanImmuneImmunityImmunoglobulin AImmunoglobulin MImmunoglobulinsImpairmentIndividualInflammationInflammatoryInterleukin-17InterventionKnowledgeLeadLeukocyte ElastaseLinkLungLymphocyteLymphocyte DepletionMediatingModelingMucosal ImmunityMucous MembraneMusNatural ImmunityOralPathogenicityPathologicPathologyPathway interactionsPatientsPolymeric Immunoglobulin ReceptorsPopulationProductionPulmonary EmphysemaPulmonary PathologyRoleSecretory Immunoglobulin ASignal TransductionStructureSurfaceT-Cell DepletionT-LymphocyteTestingVeteransWorkadaptive immunityairway epitheliumairway inflammationairway remodelingcytokinedimerend stage diseaseexperimental studyexposure to cigarette smokegerm free conditionimmune activationmonocyteneutrophilnovelreceptor expressionrecruitsmoking cessationtertiary lymphoid organtissue injuryupstream kinase
项目摘要
In the current funding period, we showed that acquired defects in mucosal immunity in small airways are a
central feature of chronic obstructive pulmonary disease (COPD). We now propose to investigate mechanisms
by which impairment of this first line of host defense leads to persistent activation of subsequent lines of host
defense (innate and adaptive immunity), thus driving COPD progression. Although it has been clear for
several years that COPD pathology begins in the small resistance airways, the mechanisms linking small
airway and parenchymal pathology have been obscure. The small airway epithelium generates mucosal host
defense by a variety of mechanisms, including transporting immunoglobulins to the airway surface. Down-
regulation of polymeric immunoglobulin receptor (pIgR) expression, which is required for transport of dimeric
IgA from the basolateral to luminal surface of the airway, is selectively reduced in COPD and impairs
generation of the secretory IgA (SIgA) barrier on the airway surface. In individual small airways of COPD
patients, reduced SIgA is associated with bacterial invasion into the epithelial layer, activation of NF-κB, and
influx of inflammatory/immune cells. These pathogenic features can be modeled in pIgR deficient (pIgR-/-)
mice, which lack SIgA on mucosal surfaces. Like COPD patients, these mice develop progressive
emphysema and small airways remodeling, along with evidence of bacteria within the airway epithelial layer,
epithelial NF-κB activation, and an influx of inflammatory/immune cells. Raising pIgR-/- mice in germ-free
conditions, treatment with broad spectrum oral antibiotics, and neutrophil depletion reduce lung pathology. In
addition, pIgR-/- mice develop lymphocyte accumulation, including increased CD4+ and Th17+ T cells, and
tertiary lymphoid structures in the lungs, particularly with advanced age (similar to humans with severe COPD),
along with a shift in the dendritic cell population towards increased monocyte-derived dendritic cells.
Lymphocyte depletion reduces COPD-like pathology in pIgR-/- mice and treatment with broad spectrum
antibiotics normalizes DC populations, reduces T cell influx, and eliminates accumulation of tertiary lymphoid
structures, thus implicating both innate and adaptive immunity in the COPD-like pathology in this model.
Together, available data suggests that each layer of the multi-layered airway host defense structure, which
evolved to protect vulnerable mucosal surfaces, becomes dysfunctional in COPD. Therefore, we hypothesize
that disruption of the SIgA immune barrier in small airways results in inflammatory signaling in epithelial cells,
leading to persistent recruitment and activation of innate immune cells and pathologic activation of adaptive
immunity, which synergize to drive airway remodeling and emphysema. Specific Aims are: 1) to investigate
the role of epithelial NF-κB in driving innate and adaptive immune activation in mice with mucosal immune
deficiency, 2) to identify the role of T lymphocytes in development of COPD-like pathology in mice with
mucosal immune deficiency, and 3) to determine whether altered dendritic cell subsets in the lungs mediate
adaptive immune activation and sustained inflammation in COPD. Detailed knowledge of interactions between
mucosal, innate, and adaptive immunity that drive COPD progression is required to develop new ways to limit
progressive tissue injury while maintaining adequate host defense in the lungs.
在当前的资金期间,我们表明在小气道中获得的粘膜免疫缺陷是
慢性阻塞性肺疾病(COPD)的主要特征。我们现在建议调查机制
通过哪种损害,第一线宿主防御导致随后的主机持续激活
国防(先天和适应性免疫学),因此推动了COPD的进展。虽然很清楚
COPD病理学从小型阻力气道开始的几年,这些机制与小
气道和副型病理学一直是晦涩的。小气道上皮会产生粘膜宿主
通过多种机制进行防御,包括将免疫球蛋白运输到气道表面。向下-
调节聚合物免疫球蛋白受体(PIGR)表达,这是二聚体运输所必需的
IgA从气道的基底外侧到腔表面,在COPD中选择性降低并损害
在气道表面上产生秘密IGA(SIGA)屏障。在COPD的单个小气道中
患者的SIGA降低与细菌侵入上皮层有关,NF-κB的激活和
炎症/免疫细胞的影响。这些病原特征可以在不足的PIGR中建模(PIGR - / - )
小鼠,在粘膜表面缺乏Siga。像COPD患者一样,这些小鼠发展
肺气肿和小气道重塑,以及气道上皮层中细菌的证据
上皮NF-κB激活和炎症/免疫细胞的影响。在无菌中升高pigr - / - 小鼠
疾病,广谱口服抗生素的治疗以及中性粒细胞耗竭可减少肺病理学。在
另外,PIGR - / - 小鼠会形成淋巴细胞积累,包括CD4+和Th17+ T细胞增加,以及
肺中的三级淋巴结构,尤其是高龄(类似于患有严重COPD的人),
随着树突状细胞种群向增加单核细胞衍生的树突状细胞的转变。
淋巴细胞耗竭可降低PIGR - / - 小鼠中的COPD样病理,并用广谱治疗
抗生素使直流种群归一化,减少了T细胞的影响并消除了三级淋巴样的积累
因此,在该模型中类似COPD的病理学中,结构是隐含的先天和适应性免疫学。
总之,可用的数据表明多层气道宿主防御结构的每一层
进化为保护脆弱的粘膜表面,在COPD中变得功能失调。因此,我们假设
小气道中SIGA免疫屏障的破坏会导致上皮细胞的炎症信号传导,
导致持续募集和激活先天免疫小球和自适应的病理激活
免疫力,协同驱动气道重塑和肺气肿。具体目的是:1)调查
上皮NF-κB在粘膜免疫反应的小鼠中驱动先天和适应性免疫反应中的作用
缺乏症,2)确定T淋巴细胞在小鼠中的COPD样病理发展中的作用
粘膜免疫缺陷和3)确定肺中的树突状细胞亚群是否改变
自适应免疫激活和COPD中的持续注射。详细了解互动之间的互动
需要驱动COPD进展的粘膜,先天和适应性免疫才能开发出新的方法来限制
进行性组织损伤,同时保持肺部充足的宿主防御。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy S. Blackwell其他文献
LncRNAs: Promising new targets in pulmonary fibrosis.
LncRNA:肺纤维化有希望的新靶点。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.5
- 作者:
Songzi Zhang;Hongbin Chen;Dayong Yue;Timothy S. Blackwell;Changjun Lv;Xiaodong Song - 通讯作者:
Xiaodong Song
Comprehensive Analysis of Constraint on the Spatial Distribution of Missense Variants in Human Protein Structures
人类蛋白质结构错义变异体空间分布约束的综合分析
- DOI:
10.1101/109652 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
R. M. Sivley;J. Kropski;J. Sheehan;J. Cogan;Xiaoyi Dou;Timothy S. Blackwell;J. Phillips;J. Meiler;William S. Bush;J. Capra - 通讯作者:
J. Capra
IKK b Activation in the Fetal Lung Mesenchyme Alters Lung Vascular Development but Not Airway Morphogenesis
胎儿肺间充质中的 IKK b 激活会改变肺血管发育,但不会改变气道形态发生
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. McCoy;J. Herington;Ashley N. Stouch;A. B. Mukherjee;O. Lakhdari;Timothy S. Blackwell;L. Prince - 通讯作者:
L. Prince
DEV117200 1..12
DEV117200 1..12
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Erin J. Plosa;Lisa R. Young;Peter M. Gulleman;Vasiliy V. Polosukhin;Rinat Zaynagetdinov;John T. Benjamin;Amanda M. Im;Riet van der Meer;Linda A. Gleaves;Nada Bulus;Wei Han;Lawrence S. Prince;Timothy S. Blackwell;Roy Zent - 通讯作者:
Roy Zent
309 - Identification of Isoketal-Modified Proteins and Genes That Regulate Their Formation
- DOI:
10.1016/j.freeradbiomed.2015.10.359 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Stacey Mont;Sean S. Davies;L. Jackson Roberts II;W. Hayes McDonald;Raymond L. Mernaugh;Brahm H. Segal;William Zackert;Sekhar R. Konjeti;Jonathan A. Kropski;James J. Galligan;Timothy S. Blackwell;Pierre P. Massion;Lawrence J. Marnett;Michael L. Freeman - 通讯作者:
Michael L. Freeman
Timothy S. Blackwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy S. Blackwell', 18)}}的其他基金
Thromboxane Receptor Signaling in Pulmonary Fibrosis
肺纤维化中的血栓素受体信号传导
- 批准号:
10307550 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Thromboxane Receptor Signaling in Pulmonary Fibrosis
肺纤维化中的血栓素受体信号传导
- 批准号:
9909907 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Thromboxane Receptor Signaling in Pulmonary Fibrosis
肺纤维化中的血栓素受体信号传导
- 批准号:
10063557 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Mechanisms driving airway inflammation in chronic lung disease
慢性肺病气道炎症的驱动机制
- 批准号:
8733873 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Mechanisms driving airway inflammation in chronic lung disease
慢性肺病气道炎症的驱动机制
- 批准号:
10477197 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Mechanisms driving airway inflammation in chronic lung disease
慢性肺病气道炎症的驱动机制
- 批准号:
8974370 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Mechanisms driving airway inflammation in chronic lung disease
慢性肺病气道炎症的驱动机制
- 批准号:
10012234 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似海外基金
Th1/Th17 Immune Regulation in Severe Allergic Asthma
严重过敏性哮喘中的 Th1/Th17 免疫调节
- 批准号:
10348780 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Th1/Th17 Immune Regulation in Severe Allergic Asthma
严重过敏性哮喘中的 Th1/Th17 免疫调节
- 批准号:
10214803 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Roles of STING and innate lymphoid cell plasticity in severe asthma
STING 和先天淋巴细胞可塑性在严重哮喘中的作用
- 批准号:
10514569 - 财政年份:2020
- 资助金额:
-- - 项目类别: