Markerless Tracking of 3D Posture to Reveal the Sensory Origins of Body Schema

3D 姿势无标记跟踪揭示身体图式的感官起源

基本信息

项目摘要

The goal of this proposed research is to reveal the sensory origins underlying the body schema representation. Body schema is the brain's internal model of the body's spatial configuration. This internal representation is critical for sensorimotor processing, movement control, and self-awareness, and is continuously updated during movement. Body schema representations are disrupted when somatosensory input is lost. The first step toward discover the neural correlates of body schema is to uncover neural mechanisms that generate body posture representation. We hypothesize that sensory inputs from primary somatosensory cortex (S1) and secondary somatosensory cortex (S2) to the posterior parietal cortex (PPC) are transformed to construct a body posture representation. To delineate the mechanisms underlying the neural coding of body posture, this project will utilize large- scale monitoring, apply interventional tools, develop new data analysis tools, and integrate new approaches. Our approach is to perform large-scale electrophysiological recording and novel markerless tracking of 3D posture in freely moving mice. To track posture, the first aim is to adapt a markerless tracking pipeline comprised of a deep 3D convolutional neural network to process high-speed videography of mouse behavior from multiple cameras. The second aim is to perform large-scale recording of neurons in S1, S2, and PPC and use advanced computational approaches to determine which postural features best explain the activity of neurons in these cortical areas. Finally, the third aim is to use optogenetic and projection-specific manipulations to address the causal impact of proprioceptive inputs from S1 and S2 on coding of posture in PPC. This research promises to uncover how sensory inputs are involved in generating the body schema representation and guiding behavior. Extensive training will be required to carry out this project and achieve my goal of earning a tenure-track professor position. The rigorous methodological and intellectual environment in Dr. Fan Wang’s lab and the Duke Neurobiology community will advance my conceptual knowledge and technical skills. I will implement deep learning techniques through training and collaboration with specialists. I will learn new techniques by attending Neuropixel and computational neuroscience courses. Finally, I will develop my professional skills by frequent attendance of seminars, workshops, and meeting with a postdoctoral mentorship committee. The proposed project will be conducted in the Department of Neurobiology at the Duke University Medical Campus. This interdisciplinary community at Duke will bolster the research and training included in this application through frequent interaction with talented and collaborative faculty, organization of seminars and symposia, numerous opportunities to practice research talks and receive valuable feedback, formation of a personalized postdoctoral mentorship committee, extensive career and professional training, and invaluable support from the postdoctoral association.
这项研究的目的是揭示身体图式背后的感觉起源 身体图式是身体空间配置的大脑内部模型。 表征对于感觉运动处理、运动控制和自我意识至关重要,并且 当体感输入时,身体图式表征会在运动过程中不断更新。 发现身体图式的神经关联的第一步是揭示神经机制。 我们捕获了来自初级体感皮层的感觉输入。 (S1) 和次级体感皮层 (S2) 到后顶叶皮层 (PPC) 转化为 构建身体姿势表示。 为了描述身体姿势神经编码的机制,该项目将利用大 规模监测,应用介入工具,开发新的数据分析工具,并整合我们的新方法。 方法是进行大规模电生理记录和新颖的 3D 姿势无标记跟踪 为了跟踪自由移动的小鼠的姿势,第一个目标是采用由以下部分组成的无标记跟踪管道: 深度 3D 卷积神经网络处理多个小鼠行为的高速摄像 第二个目标是对 S1、S2 和 PPC 中的神经元进行大规模记录并使用先进的技术。 计算方法来确定哪些姿势特征最能解释这些神经元的活动 最后,第三个目标是使用光遗传学和投影特定的操作来解决 S1 和 S2 的本体感受输入对 PPC 姿势编码的因果影响。 揭示感官输入如何参与生成身体图式表征和指导行为。 需要进行广泛的培训才能开展该项目并实现我获得终身教职的目标 王帆博士的实验室和杜克大学严谨的方法论和学术环境。 神经生物学社区将提高我的概念知识和技术技能,我将深入实施。 通过培训和与专家合作来学习技术 我将通过参加来学习新技术。 最后,我将通过频繁的神经像素和计算神经科学课程来发展我的专业技能。 参加研讨会、讲习班以及博士后指导委员会的会议。 拟议的项目将在杜克大学医学院神经生物学系进行 杜克大学的这个跨学科社区将加强其中的研究和培训。 通过与有才华和协作的教师的频繁互动、组织研讨会和 研讨会、大量实践研究演讲并获得宝贵反馈的机会、形成 个性化的博士后导师委员会、广泛的职业和专业培训以及宝贵的 博士后协会的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyle Scott Severson其他文献

Kyle Scott Severson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyle Scott Severson', 18)}}的其他基金

Markerless Tracking of 3D Posture to Reveal the Sensory Origins of Body Schema
3D 姿势无标记跟踪揭示身体图式的感官起源
  • 批准号:
    10410450
  • 财政年份:
    2020
  • 资助金额:
    $ 6.64万
  • 项目类别:
Markerless Tracking of 3D Posture to Reveal the Sensory Origins of Body Schema
3D 姿势无标记跟踪揭示身体图式的感官起源
  • 批准号:
    10326961
  • 财政年份:
    2020
  • 资助金额:
    $ 6.64万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 6.64万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
Research Project 2
研究项目2
  • 批准号:
    10403256
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
  • 批准号:
    10679749
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了